
Russian State University University of
for the Humanities Duisburg-Essen

Faculty of Information Security Institute for Experimental Mathematics

Andrey Bogdanov

Efficient and Cryptographically Secure Addition
in the Ideal Class Groups of Hyperelliptic Curves

Diploma Thesis

Scientific advisor:
Prof. Dr. Vladimir Anashin

Scientific supervisor:
Prof. Dr. Dr. h.c. Gerhard Frey

Essen 2005



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

Acknowledgements

First of all I would like to express my deep appreciation to my supervisor Professor Gerhard
Frey for his guidance, useful hints, valuable time and constant support throughout my study.
Thanks to Erwin Heß for his initial encouragement, Professor Vladimir Anashin for good

advice and support, to Tanja Lange for information and fruitful discussions, to Roberto
Avanzi for kindly providing me with the source code of nuMongo and BinGo, to Professor
Sergey Gashkov for acquainting me with the foundations of the arithmetic over hyperelliptic
curves, to Ilya Kizhvatov for partially proof-reading the manuscript, to Wolfgang Happle for
repairing my laptop and to all other people from the Institute for Experimental Mathematics
in Essen. I express my gratitude to my parents and to Oxana.



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

Abstract

In this thesis asymmetric cryptographical systems based on hyperelliptic curves are discussed.
For genus 2 hyperelliptic curves the subgroup Pic0Fq(C) of the degree 0 part Pic

0(C) of the
Picard group Pic(C) offers the exponential security level if the parameters were chosen in a
proper way, which is also the case for genus 1 hyperelliptic curves. The latter are elliptic curves
with the group of Fq-rational points isomorphic to Pic0Fq(C). The arithmetic in Pic

0
Fq(C) of a

genus 2 hyperelliptic curve is very efficient providing performance comparable to that in the
group of rational points on an elliptic curve for the same group size. For elliptic curves one
has to use the base finite field of double size in comparison with that for hyperelliptic curves
to achieve the same security level. That is, in terms of gate area and propagation properties
the hardware implementation of the group law in Pic0Fq(C) for a hyperelliptic curve is more
efficient than for an elliptic curve over Fq1 with q ≈

√
q1. Moreover, some hyperelliptic curves

over binary fields (those with deg(h) = 1 over binary fields of odd extension degree) offer
a considerable advantage over elliptic curves in terms of performance maintaining a high
degree of diversity. There are also fast methods to (de)compress elements of Pic0Fq(C) for
such curves.
Thus, hyperelliptic curves are especially attractive for constraint applications. These are

often mobile and can be subject to side-channel attacks which are aimed at implementations
of cryptographical systems and are based on information leakage through measuring physical
parameters such as power consumption and execution time or on failure behaviour induced
by malicious physical influence. Here one has to solve a problem which is in a certain sense
opposite to that of getting the fastest possible arithmetic. The problem consists in finding
ways to harden the implementation by some means to significantly reduce or eliminate the
possibility of information leakage. The corresponding countermeasures can be of technical or
mathematical nature. Here we treat principally the mathematical ones.
The thesis begins with an introduction chapter (Chapter 1) revising the notion of public

key cryptography in abstract groups. The main part is divided into 2 chapters. In the first
one (Chapter 2) the fast arithmetic in Pic0Fq(C) of genus 2 hyperelliptic and the foundations
of the theory of algebraic curves are considered. Here among other things the author uses the
opportunity to correct some inaccuracy in the special case of the explicit formulae to perform
the group law in Pic0Fq(C) and gives an improved algorithm to efficiently (de)compress in

Pic0F
2d
(C) of special genus 2 hyperelliptic curves over binary fields. The second one (Chapter

3) deals with side-channel attacks on the implementations of cryptosystems based on genus 2
hyperelliptic curves. The corresponding countermeasures, including the Montgomery ladder,
are regarded to withstand simple side-channel attacks. Here it is shown that some ideas
proposed in the mathematical literature seem to be incomplete or do not lead to efficient
Montgomery arithmetic in their original form. Moreover, the author tries to take some other
approaches to the Montgomery-like arithmetic in Pic0F

2d
(C) of genus 2 hyperelliptic curves

and to provide a framework to get explicit scalar multiplication formulae resistant to simple
side-channel attacks.



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

Contents

1 Cryptography and Discrete Logarithm Problem 6
1.1 Public key cryptography and discrete logarithm in arbitrary groups . . . . . . . . . . . 7

1.1.1 Asymmetric cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 DLP in arbitrary finite groups and its applications . . . . . . . . . . . . . . . . 9
1.1.3 Generic mathematical attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Cryptographically suitable groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Fast arithmetic over Hyperelliptic Curves 14
2.1 Curves and general arithmetic in JC(Fq) . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Elementary algebraic geometry and algebraic curves . . . . . . . . . . . . . . . 14
2.1.2 Basic arithmetic of hyperelliptic curves . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Special mathematical attacks in JC(Fq) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Index calculus attack for JC(Fq) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Transfer attacks for JC(Fq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Explicit formulae for the group law in JC(Fq) of genus 2 hyperelliptic curves and a point
compression technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Equivalent curve equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Correct addition and doubling in affine coordinates . . . . . . . . . . . . . . . . 29
2.3.3 Addition and doubling in inversion-free coordinates . . . . . . . . . . . . . . . . 32
2.3.4 A point (de)compression technique in JC(Fq) over binary fields . . . . . . . . . 34

2.4 Efficiency of cryptographic systems based on genus 2 hyperelliptic curves . . . . . . . 36
2.4.1 Scalar multiplication methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Fast scalar multiplication over JC(Fq) in different coordinates and implementa-

tion properties of genus 2 hyperelliptic curves . . . . . . . . . . . . . . . . . . . 41

3 Side Channel Attacks on Curve Based Crypto Systems and Countermeasures 45
3.1 Threats and vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Timing attack (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Simple and differential power analysis (SPA and DPA) . . . . . . . . . . . . . . 45
3.1.3 Differential fault analysis (DFA) . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.4 Goubin-type analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Technical and mathematical countermeasures . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 A survey of technical countermeasures against SCA . . . . . . . . . . . . . . . 48
3.2.2 Mathematical countermeasures against simple SCAs on curve based public key

cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Approaches to the Montgomery arithmetic over genus 2 hyperelliptic curves . . . . . . 54

3.3.1 Imitation of the Montgomery ladder for elliptic curves . . . . . . . . . . . . . . 54
3.3.2 Special choice degree 2 divisors in Pic0Fq (C) . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Map to the Kummer surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

List of Tables

2.1 Addition: g = 2, deg(u1) = deg(u2) = 2 (from [44] with minor modifications by the
author) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Doubling: g = 2, deg(u) = 2 (from [44] with minor modifications by the author) . . . . 30
2.3 Addition and doubling in JC(Fq), g = 2, q even, deg(h) = 2, h0 = 0 [8] . . . . . . . . . 30
2.4 Addition and doubling in JC(Fq), g = 2, q even, deg(h) = 2, h0 6= 0 [8] . . . . . . . . . 30
2.5 Addition and doubling in JC(Fq), g = 2, q even, d odd, deg(h) = 1 [8] . . . . . . . . . 31
2.6 Addition of ideal classes in a special case, char F25 = 2 . . . . . . . . . . . . . . . . . . 32
2.7 Addition of ideal classes in a special case, char F7 = 7 . . . . . . . . . . . . . . . . . . 32
2.8 Addition and doubling in JC(Fq), g = 2, projective coordinates, q odd . . . . . . . . . 33
2.9 Addition and doubling in JC(Fq), g = 2, new coordinates, q odd [8] . . . . . . . . . . . 33
2.10 Addition and doubling in JC(Fq), g = 2, projective coordinates, q even, deg(h) = 2 [8] 33
2.11 Addition and doubling in JC(Fq), g = 2, new coordinates, q even, deg(h) = 2 [8] . . . 34
2.12 Addition and doubling in JC(Fq), g = 2, projective coordinates, q even, deg(h) = 1 [8] 34
2.13 Addition and doubling in JC(Fq), g = 2, recent coordinates, q even, d odd, deg(h) = 1 [8] 34
2.14 Decompression of [u, v] ∈ JC(Fq), q = 2d (made up by the author on the basis of his

modification of the decompression technique) . . . . . . . . . . . . . . . . . . . . . . . 37
2.15 ’Double and add’ scalar multiplication method . . . . . . . . . . . . . . . . . . . . . . 37
2.16 NAF representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.17 Sliding window scalar multiplication method . . . . . . . . . . . . . . . . . . . . . . . 39
2.18 NAFw representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.19 Addition in JC(Fq), g = 2, q odd [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.20 Doubling in JC(Fq), g = 2, q odd [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.21 Costs of the NAFw scalar multiplication method in JC(Fq), g = 2, q odd (made up by

the author partially following [47]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.22 Running times (in msec) of scalar multiplication in JC(Fq), g = 1 and g = 2, q = p

large prime, NAFw [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.23 Ratios of the running times of scalar multiplication in JC(Fq), g = 1 and g = 2, q odd,

NAFw, different group sizes (made up by the author on the basis of Table 2.22 ) . . . 43
2.24 Addition in JC(Fq), g = 2, q even, d odd, deg(h) = 1 [8] . . . . . . . . . . . . . . . . . 43
2.25 Doubling in JC(Fq), g = 2, q even, d odd, deg(h) = 1 [8] . . . . . . . . . . . . . . . . . 43
2.26 Costs of the NAFw method in JC(Fq), g = 2, q even, d odd, deg(h) = 1 . . . . . . . . 43
2.27 Running times (in μsec) of scalar multiplication in JC(Fq), g = 1 and g = 2, q even, d

odd, deg(h) = 1, NAFw [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Always double and add method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Efficiency of the unified group operation in Pic0Fq (C), g=2, q odd and q even [50] . . . 51
3.3 Montgomery ladder in arbitrary groups . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Doubling in Pic0Fq (C) with v-coordinate only, negative examples . . . . . . . . . . . . . 57

3.5 Doubling in Pic0Fq (C) with v-coordinate only, positive examples . . . . . . . . . . . . . 57

3.6 Classes of reduced degree 2 divisors in Pic0Fq . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Efficiency of the arithmetic in the Kummer surface, D1, D2 ∈ JC(Fp), D1 −D2 known,

Montgomery-like genus 2 hyperelliptic curve over Fp, field multiplications (M) and
squarings (S), [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

List of Figures

1.1 Equivalent group orders achieving the same security level for groups with exponential
and subexponential DLP. n = ord(G). . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Addition in JC(R). Genus 2 hyperelliptic curve over the reals. . . . . . . . . . . . . . . 23

3.1 Schematic diagram of the simple power analysis method. . . . . . . . . . . . . . . . . . 46
3.2 Schematic diagram of the differential power analysis method. . . . . . . . . . . . . . . 47
3.3 Montgomery ladder in arbitrary additive groups . . . . . . . . . . . . . . . . . . . . . . 53



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

Chapter 1

Cryptography and Discrete
Logarithm Problem

The public key cryptography is a relatively new direction in the evolution of contemporary
cryptography. The idea of the public key cryptography, which is also known as asymmetric
cryptography, is simple, but it opens a new dimension of applications which were impossible
using traditional symmetric cryptography, e.g. public digital signature techniques. The
security of asymmetric cryptographic systems is based on the infeasibility of some problems
that seem to be practically unsolvable for the time being. It is worth noticing here that there is
no proof of unconditional security of asymmetric encryption systems. Their security is based
on the lack of information and ideas regarding some computationally difficult problems. But
on the other hand there seem to have been no successful (polynomial) attacks1 on basic
public key systems (provided the parameters have been carefully chosen) in spite of the world
mathematical community trying to do this for the last 30 years.
There are two basic classes of infeasible problems that are used to build public key schemes

such as RSA, ElGamal or DSA. The first one is the factorization of a sufficiently long posi-
tive integer number of some specific structure, and the second one is the discrete logarithm
problem (DLP) in some cryptographically suitable groups. In this chapter the notion of a
public key encryption system is defined, the DLP in its generic form is described, and the
computational complexity of the DLP in some example groups is considered.

1Note that within this thesis we are speaking of classical computers only. If one takes into account all
known computer models, then it turns out that quantum computers suit for solving these problems much
better than classical ones (for details and comparisons see [14]). For quantum computers some polynomial
algorithms solving the DLP in the subgroups of the multiplicative groups of finite fields [75] and (recently) in
the groups of points of elliptic curves over prime [70] and binary [36] fields have been proposed. Moreover,
the DLP in the groups of points of elliptic curves proves to be much easier (in terms of qubits needed) to
solve than that in the multiplicative group of a field since the group guaranteeing the same security level on
classical computers is much larger in the latter case. Though there are no known quantum algorithms for
solving the DLP in the Jacobian of a hyperelliptic curve, it is assumed that such algorithms can be easily
obtained if enough effort is made. The only problem is that such computers with sufficiently long quantum
registers are extremely difficult to build. Some people among the physical research community proceed from
the assumption that such computers will not be ever built. But the classical public key cryptography is really
very interesting while there is no quantum computer with appropriately long register. Moreover, even if such
computer could be built one day, due to some fundamental physical restrictions they are very likely to have
to be manufactured anew for every concrete task. Hence, the classical public key cryptography is actually of
interest while the creation of a new quantum computer is expensive enough.



1.1 Public key cryptography and discrete logarithm in arbi-
trary groups

1.1.1 Asymmetric cryptosystems

Let {Ee : e ∈ K} be a set of encryption mappings, and let {Dd : d ∈ K} be the corresponding
set of decryption mappings, where K is a key space with the strict order < defined on its
elements. If X and Y are sets of plain and cipher texts respectively, then the mappings
defined by Ee and Dd can be described by:

Ee : x× e 7→ y, e ∈ K,x ∈ X, y ∈ Y and
Dd : y × d 7→ x, d ∈ K,x ∈ X, y ∈ Y.

(1.1)

Moreover, we assume that Ee and Dd are completely given by the corresponding key param-
eter e or d. Now consider the set of pairs of coupled mappings C = {(Ee, Dd)} with the
following algorithm to construct it:

1. C ← {Ee|e ∈ K} × {Dd|d ∈ K};

2. (∃e ∈ K, ∃d ∈ K : (∃x ∈ X : Dd(Ee(x)) 6= x))⇒ (C ← C\{(Ee, Dd)});

3. (∃e ∈ K, ∃e′ ∈ K, e < e′, ∃d ∈ K : (∀x ∈ X : Dd(Ee(x)) = Dd(Ee′(x)) = x)) =⇒
⇒ (C ← C\{(Ee′ , Dd)});

4. (∃e ∈ K, ∃d ∈ K, ∃d′ ∈ K, d < d′ : (∀x ∈ X : Dd(Ee(x)) = Dd′(Ee(x)) = x)) =⇒
⇒ (C ← C\{(Ee, Dd′)}).

Now we clear up the meaning of each step:

1. In this step we construct C consisting of all the possible combinations of encryp-
tion/decryption mapping pairs. At the following steps the number of pairs in C is
reduced by applying some conditions.

2. At this step we exclude from C such mapping pairs which are not conjugate and there-
fore cannot guarantee the unambiguity of decryption.

3. Here we find and exclude from C such mapping pairs that have equivalent encryption
components.

4. Analogously, here we exclude from C such mapping pairs that have equivalent decryp-
tion components.

Having done 1)-4), one can be sure that C contains all possible coupled mapping pairs and
that there are no equivalent mapping pairs in C. This is the definition of the set C.
Note that while being reduced throughout steps 1)-4) the set C can lose all pairs with

some Ee in the first component or some Dd in the second one. For example, for some e there
can be no corresponding decryption mapping. Let Ke = {e|∃d ∈ K : (Ee, Dd) ∈ C} be the
set of all possible encryption keys in C, and let Kd = {d|∃e ∈ K : (Ee, Dd) ∈ C} be the set
of all possible decryption keys. Then one can give the following

Definition 1. The quintuple (C,Ke,Kd, X, Y ) of sets described above is called a public key
cryptographic system (an asymmetric cryptographic system), if for each pair of mappings
(Ee, Dd) from C the key e ∈ Ke is public (publicly distributed among users), and the key
d ∈ Kd is private (kept in secret by its owner).

7



In order for the defined type of cryptographic systems to be theoretically secure the fol-
lowing conditions must be satisfied (hereby the theoretical security of an asymmetric crypto
system is defined in part following the idea of Shannon2 [74] for symmetric ciphers):

• For every fixed value x ∈ X, given an arbitrary public key e ∈ Ke, the corresponding
ciphertext y = Ee(x), and the mapping Dd : (Ee, Dd) ∈ C as a "black box" with d
unknown, there is no faster way to find x than the exhaustive search inX or determining
d.

• For every fixed value d ∈ Kd, given an arbitrary public key e ∈ Kd : (Ee, Dd) ∈ C, and
given the mapping Dd as a "black box" with d unknown, there is no faster way to find
d than the exhaustive search in Kd.

This security condition concerning the possibility to use Dd as a "black box" is quite powerful.
For instance, the adversary is allowed to apply "lunch time attack", that is, the attack
with chosen plaintexts which is often very mighty. Moreover, Shannon’s theoretical security
condition does not require that. So the security condition given here is stronger3 in a certain
sense. But such theoretically secure asymmetric cryptographic systems are difficult to be
thought of and to make use of, the same being the case for symmetric ciphers. So in the
real-world practically secure public keys systems are applied. They are based upon difficult
computational problems which realize in trapdoor one-way functions (Ee with the secret value
d allowing to invert it). If such functions are used to build the asymmetric crypto system it is
possible to get some information about x or d from e, y and Dd used as a "black box" but it
should be computationally infeasible to derive x or d in a system with appropriately selected
parameters. So in practical situations there exist attacks on such systems meaning that
they require (often considerably) less operations than the exhaustive search. The real-world
attacks can be divided into two fundamentally different classes:

• Mathematical attacks work with the abstract (mathematical) representation of the
structures under consideration and try to make use of the cryptographic imperfection
of these structures to determine secret parameters;

• Non-mathematical attacks (first of all, physical ones) which use the weaknesses of the
implementations of public key methods. These attacks are also known as side-channel
attacks (SCA) and are based on information leakage through different timings of opera-
tions, diverse power consumption, electromagnetic emission of devices and so on which
depend on some secret information. Moreover, sometimes it turns out to be possible to
cause faults on the target devices and to get modified output values that can contain
more information about the secret internal values than usual ones.

In this thesis the consideration of some specific attacks on the protocols that use asymmetric
cryptographical systems is omitted (a good survey of such techniques can be found in [72])
and attacks on the public key algorithms (asymmetric crypto systems) which can be applied
as crypto primitives in these protocols are discussed only.
One of these (practically applied) difficult problems is the discrete logarithm one (DLP)

which is treated in the next subsection in greater detail.

2Note that the definition of Shannon’s theoretical security for symmetric ciphers is based on information
theory: One gets no additional information about the plaintext x through knowing the corresponding ciphertext
y, i.e. p(x) = p(x/y). In our setting we could follow this approach literally, but we prefer to define the security
properties in terms of operations and complexity.

3Though one is permitted to use a key from a non-finite keyspace, there are cases in which the keyspace
(together with plaintext and ciphertext spaces) is finite. In such cases there is always an attack: one can find
the plaintext or key value with non-zero possibility. But it is worth putting here that in real-world applications
all sets are always finite.

8



1.1.2 DLP in arbitrary finite groups and its applications

Let G be an additively written finite cyclic abelian group, ord(G) = n. From now on we
assume that the order n of G is known explicitly. Let α be a generator of G. This means
that each element g ∈ G can be represented as a (scalar) multiple of α, g = kα, for some
k ∈ {0, 1, 2, . . . , n − 1}. If G is not cyclic, then its cyclic subgroup generated by an element
g of the highest order can be used instead. By Lagrange’s theorem one can always assume
that ord(g)|n.
In 1975 Diffie and Hellman [23] proposed a cryptographic scheme which uses such groups to

construct public key cryptographic systems. Based on their proposal the scheme is redefined
for an arbitrary cyclic finite group G. Strictly speaking, this scheme is not a public key
cryptographic system as defined above. But it allows two users to generate a secret value
which can be used as a secret key in a symmetric cryptographic system afterwards. Per se it
is a key distribution protocol whose security rests upon DLP. The generalized Diffie-Hellman
scheme can be represented in the following (additive) way:

Generalized Diffie-Hellman key distribution scheme

One-time setup: G which is the above defined cyclic finite group, its order n = ord(G), and
its generator α

Input: G, n, α

A chooses xA ∈ {1, 2, . . . , n− 1} at random, computes yA = xAα, and sends yA to B.
xA is kept till the end of the protocol.

B receives yA from A, chooses xB ∈ {1, 2, . . . , n− 1} at random, computes yB = xBα
and sends yB to A. Then B computes kB = xByA

A receives yB and computes kA = xAyB.

Output: k = kA = kB is the generated common secret key.

The protocol is evidently correct since

kA = xAyB = xA(xBα),
kB = xByA = xB(xAα), and consequently
k = kA = kB .

(1.2)

The security of this scheme is based upon the generalized DLP (GDLP) which is introduced
through

Definition 2. The generalized discrete logarithm problem is the following: Given G, its order
n, α and g ∈ G, find the integer k ∈ {1, . . . , n−1} such that k ∙α = g. k is called the discrete
logarithm of g to the base α.

It is known that the difficulty of GDLP is independent of the used generator of G.
There exist some other asymmetric cryptographic systems and schemes that make use of

the fact that DLP is computationally infeasible in some groups. One of the most important
applications of public key cryptography generally and DLP-based cryptographical systems
specifically is digital signature. Here an additively written generalization of the standard
digital signature algorithm DSA (Digital Signature Algorithm) is given which is the stan-
dardized digital signature procedure in the USA. Let π : G → Z be some deterministic
injective integer-valued mapping4 of the group elements. Actually, since G is finite, one has
| Im(π)| <∞. Moreover, let Im(π) ⊂ N be a subset of positive integers.

4π can be usually naturally defined in the real-world applications since implementations make use of internal
binary representation of group elements in devices. As a matter of fact it can be a difficult task to find such
a representation for an arbitrary group of some nature. But here this problem is not regarded.

9



Generalized DSA signature scheme

One-time setup: G is the above defined cyclic finite group, its order n = ord(G) is prime,
and its generator is α. A generates d ∈ {1, 2, . . . , n − 1} randomly and securely and
computes β = dα. d is the private key of A, the quadruple (β,G,n,α) is the public key
of A.

Signature generation

Input: e ∈ {1, . . . , n− 1} — message to sign, G, n, α

1. Choose k ∈ {1, . . . , n− 1} which is the ephemeral key securely at random.

2. Compute kα.

3. Compute r = π(kα)modn. If r = 0 then go to 1.

4. Compute k−1modn.

5. Compute s = k−1(e+ dr)modn. If s = 0 then go to 1.

Output: The pair (r, s) ∈ {1, . . . , n− 1}2 forms the signature for e.

Signature verification

Input: The public key (β,G, n, α), the message e ∈ {1, . . . , n − 1}, (r, s) ∈ Z2 —
signature to verify.

1. If r 6∈ {1, . . . , n− 1} or s 6∈ {1, . . . , n− 1} then reject (r, s).

2. Compute w = s−1modn.

3. Compute u1 = ewmodn and u2 = rwmodn.

4. Compute γ = u1α+ u2β. If γ = 0, then reject (r, s).

5. Compute v = π(γ)modn.

6. Accept (r, s) iff v = r.

Now we show that v = r if all the parameters are correct:

s = k−1(e+ dr),
u1 = es

−1, u2 = rs
−1,

γ = ewα+ rwβ = es−1α+ rs−1β = s−1(eα+ rβ) =
= k 1

e+dr (eα+ rβ) = k
1
e+dr (eα+ rdα) = kα.

(1.3)

So we have that v = π(γ) = π(kα) = r.

1.1.3 Generic mathematical attacks

As above it is assumed that the order n of the group G is given explicitly, the order k of
β = kα, its Hamming weight are unknown to the adversary, and that k is chosen at random
from the set {1, 2, . . . , n− 1}.
There are several algorithms that can be used to compute the discrete logarithm of β in

arbitrary groups. There exists the lower asymptotical complexity bound for DLP-algorithms
in generic groups due to Nechaev [68] and Shoup [76]. Let G be a cyclic finite group of order
n. Then there are no algorithms that solve the DLP in G using asymptotically fewer than
O(
√
n) operations, if n is prime. Moreover, several algorithms with this property are well

known, e.g., the baby-step giant-step algorithm and Pollard’s rho algorithm.
The baby-step giant-step algorithm is a time-memory trade-off of exhaustive search and re-

quires storage forO(
√
n) group elements, O(

√
n) group operations to construct and O(

√
n log n)

comparisons to sort the table. But it can give advantage over Pollard’s rho algorithm if there

10



are subgroups in G and their structure is known, since the group elements are referred to by
their orders as (i, αi) where α is the generator of G. The method can be parallelized on t
computers with a

√
t-fold speed-up only, that is, it requires O(

√
n)/
√
t clocks on t computers.

Pollard’s rho algorithm requires a negligible amount of storage, but is based on the us-
age of a pseudorandom function which enumerates the group elements independent of their
belonging to its subgroups. If n is prime, then the preferable algorithm is Pollard’s rho one,
since it requires almost no storage and the baby-step giant-step algorithm offers no advantage
in the case of prime group order. The method can be well parallelized in practice. It requires
O(
√
n)/t clocks when run on t computers and therefore enables a t-fold speed-up.
Pohlig-Hellman algorithm is to be applied if n is smooth, i.e. n = ps11 . . . p

sr
r has only

small prime factors pi, i = 1, . . . , r. Then this algorithm requires O(
∑r
i=1 si(log n+

√
pi))

group operations only and a negligible amount of storage. The algorithm is based on the
Chinese remainder theorem. First the problem in the subgroups of prime orders pi is solved in
correspondingly exponential time and then the solutions are transferred to the corresponding
groups of orders psii using the p-adic extension (Hensel’s lifting lemma). At last the Chinese
remainder theorem is applied to transfer the solutions to the whole group G.
The complexity of DLP in G is strongly dependent on construction of G. In order for the

generic group to offer the best possible practical security for the DLP it is advisable to use
the group G of a prime order n so as to exclude any non-trivial subgroups of G and to make
Pohling-Hellman algorithm not applicable. In this case the best algorithm is Pollard’s rho
one, Pohling-Hellman algorithm and the baby-step giant-step algorithm having no advantage
because of no non-trivial subgroups of G. The group G, ordG = m = c ∙ n, with some small
co-factor c and a large prime main factor n in its order m can be also applied. Here one has
to check that the applied generator α of G is of order n at the least. The expected complexity
of Pollard’s rho algorithm is s ∙ e

1
2
n with s varying for different implementation approaches.

Some of them can be found in [79].

1.2 Cryptographically suitable groups

In the following it is discussed what groups can be regarded as cryptographically suitable
and consider their properties. Moreover, some example groups are given and it is shown how
similar sets of simple mathematical objects can be treated in different ways according to the
group nature which results in different cryptographic properties.
A cryptographically suitable group should meet the following requirements:

1. Group elements should have a compact representation. It is preferable that each group
element can be given through a unique bit string of length about log2 n, where n is the
order of the group G under consideration. This property can be expressed in terms of
embedding G into a group with numeration as in [28]. Moreover, the group order n is
demanded to be computable and explicitly known.

2. Given a representation for the elements, an efficient algorithm should be known to
perform the group law. "Efficient" can mean either "polynomial" or (more strongly
and concretely formulated) "requiring no more than t computer operations", the set of
permitted operations being fixed. Usually, such operations are addition modulo 2l with
carry, substraction modulo 2l with carry, multiplication of 2 l-bit integer numbers with
a (2 ∙l)-bit result, division of a (2 ∙l)-bit integer number through an l-bit integer number,
bitwise logical binary operations such as XOR, AND, OR, NOT on l-bit numbers. On
the most contemporary chips l = 8, l = 16, l = 32 or l = 64. Some parallelization
techniques (such as SIMD-extensions, multi-core processors or parallel cryptographical
co-processors) can be taken into account too. But there are platforms which provide

11



some specialized hardware computational environments with l from 100 to 2000 for
integer operations and some additional operations such as addition or multiplication in
the binary field GF(2l) for l from 100 to 2000.

3. The DLP in the group G should be computationally infeasible. The difficulty of the
DLP should preferably be exponential in log n as in a generic "black-box" group. But
it can be acceptable to use a group realization with the DLP being subexponential,
though it is not always reasonable, since to provide the same security one has to use a
more expensive representation of group elements and the group law (see Fig. 1.1).

To consider the following examples one needs a precise definition of subexponentiality5.

Definition 3. An algorithm is called subexponential in log n if it requires

Ln[γ, c] = exp{(c+ o(1))(log n)
γ(log log n)1−γ},

where o(1)→ 0 if n→∞, c, γ are constant, and γ < 1.

Note that the impact of the group size n is distributed among log n and log log n in the
exponent through the value of γ which reflects the degree of subexponentiality. Therefore γ
is the most important parameter of any subexponential algorithm.
The additive group of the quotient ring Z/pZ, where p is prime, is one of the most

simple examples of group structures. The operation is merely addition of two dlog pe-bit
integers modulo p. So the first two requirements for cryptographically suitable groups are
met. But the security property is improper: There is an effective algorithm (Euclidean
algorithm) with average complexity 12 ln 2

π2
ln p = O(log p) steps each step requiring one integer

division which makes this group cryptographically unsuitable. As a matter of fact, there is
another algorithm to compute the DLP in this additive group. Given the generator α ∈
{2, . . . , p − 1} and an element β = kα ∈ {2, ..., p − 1} it suffices to find the multiplicative
inverse of α which can be done by exponentiation αp−1mod p using any version of the binary
exponentiation algorithm with complexity O(log p) multiplications and squarings modulo p.
Each multiplication requires O(log p) additions modulo p which results in O((log n)2) group
operations (additions) to solve the DLP. Or multiplicatively written: The DLP requires
O(log p) multiplications modulo p, in other words it is linear.
The multiplicative group GF(p)∗ of the prime field GF(p). This is an example of groups

which have the subexponential complexity of DLP. Asymptotically the best known algorithm
for the computation of DLP in GF(p) is the number field sieve algorithm (NFS) due to Pollard
(see [52] for a thorough history of NFS). It works with complexity Lp[

1
3 ; c]. Today the fastest

known version of NFS for GF(p)∗ requires the constant c equal to (92 + 26
√
13)

1
3 [56], [55].

Though the complexity is not polynomial, it is considerably lower as in the case of generic
groups. This non-observance of the 3rd preferable requirement for cryptographically suitable
groups results in the necessity to use the group of a higher order to achieve the same level
of security. The interdependence between log2 n for groups with exponential and those with
subexponential DLP is represented in Fig. 1.1.
For the time being the infeasible number of operations on computers is thought6 to be

about 280. This is approximately the complexity of the exhaustive search task as applied

5Exponentiality in log n can be expressed as O(Ln[1, c]) = O(exp{(c+ o(1)) log n}) = O(n).
6Currently the fastest known computer is BlueGene/L DD2 [82] and provides a peak performance of 70.72

TFlops ' 246 Flops. A task with complexity of 280 operations could be solved in approximately 545 years of
computations using the computer. Although a higher level of performance could be achieved using several such
computers or linking a number of computer networks, this machine can serve as a good illustrative example of
the computational power available today. The time point to begin the computations plays an important role,
since it is reasonable to wait until more powerful resources are available and only then start the attack. By
optimally choosing the start point in the latter case, the total time needed for successfully determining the
secret parameters significantly decreases.

12



Figure 1.1: Equivalent group orders achieving the same security level for groups with exponential and
subexponential DLP. n = ord(G).

to otherwise secure symmetric ciphers with 80-bit secret keys. To achieve the same security
for a cryptographic system based on the exponential DLP one has to use a group of order
of about 2160. For the same level of security in a group with the subexponential DLP (such
as GF(p)∗) one has to use the group of order of about 21000 which leads to a much longer
representation. This gives rise to the search for concrete realizations of groups with the
exponential DLP. Such groups turned out to exist and to have very good representation and
group law complexity properties. They are tightly connected with the Picard groups of some
algebraic curves and will be considered in the next chapter.

13



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

Chapter 2

Fast arithmetic over Hyperelliptic
Curves

2.1 Curves and general arithmetic in JC(Fq)

2.1.1 Elementary algebraic geometry and algebraic curves

In this subsection some basic notions from arithmetic geometry and commutative algebra are
given. The consideration results in the definition of the ideal class group and divisor class
group of a smooth algebraic curve. The overview is based on [8], [77], [2], [43], [54].
Let K be a finite (and therefore perfect since every extension is separable) field with

q = pd elements, d ∈ Z, d ≥ 1 and d < ∞. Let K be the algebraic closure of K (the field
over which every polynomial from the polynomial ring K[x] has no irreducible factors). Let
GK/K denote the Galois group of the extension K/K (by definition GK/K = Aut K/K, i.e.,

it is the set of all automorphisms of K which fix K).
Affine n-space over K is the set of n-tuples [77]

An = An(K) = {P = (x1, . . . , xn) : xi ∈ K}. (2.1)

The set of K-rational points in An is the set

An(K) = {P = (x1, . . . , xn) ∈ A
n : ∀xi ∈ K}. (2.2)

Let I ⊂ K[X1, . . . , Xn] be an ideal of a polynomial ring in n variables over K. Hilbert’s
basis theorem states that if K is a Noetherian ring, so is the polynomial ring of one variable
K[X]. Since the field K is a Noetherian ring, by multiple application of Hilbert’s basis
theorem we have that the polynomial ring K[X1, . . . , Xn] is Noetherian and therefore every
ideal I ⊂ K[X1, . . . , Xn] is finitely generated. Recall that I is finitely generated if there is
a finite set of polynomials ϕ1, . . . , ϕl ∈ I such that for every element ψ ∈ I there exists the
corresponding set of coefficients γ1, . . . , γl ∈ K[X1, . . . , Xn] and ψ is a linear combination of
ϕ1, . . . , ϕl with these coefficients:

ψ =
l∑

i=1

γiϕi. (2.3)

Assuming
VI = {P ∈ A

n : f(P ) = 0 ∀f ∈ I} ⊂ An (2.4)

one can give the following



Definition 4 (affine algebraic set V , ideal of V , rational points of V ). VI forms an affine
algebraic set V ,i.e., V = VI for some ideal I. The ideal

I(V ) = {f ∈ K[X1, . . . , Xn] : f(P ) = 0, ∀P ∈ V } (2.5)

is called the ideal of the algebraic set V . The algebraic set V is said to be defined over K if the
ideal I(V ) can be (finitely) generated by polynomials1 from K[X1, . . . , Xn]. This is denoted by
V/K. If V is defined over K, the set of its K-rational points is the set V (K) = V ∩ An(K).

Let V be an algebraic set. The ideal I(V/K) is defined as:

I(V/K) = {f ∈ K[X1, . . . , Xn] : f(P ) = 0 ∀P ∈ V } = I(V ) ∩K[X1, . . . , Xn]. (2.6)

Note that V is defined over K if and only if I(V ) = I(V/K)K[X1, . . . , Xn].
An ideal J ⊂ R of some commutative ring R with unity is called prime if for every a, b ∈ R

with the property a ∙ b ∈ J the following holds: a ∈ J or b ∈ J .

Definition 5 (affine variety, affine coordinate ring, function field). An affine algebraic set
V is called an affine variety if I(V ) is a prime ideal in K[X1, . . . , Xn]. If V is defined over
K, that is, one deals with V/K, The quotient ring K[V ] = K[X1, . . . , Xn]/I(V/K) is called
the affine coordinate ring of the variety V/K. The field K(V ) of fractions of the ring K[V ]
is called the affine function field of the variety V/K. For a generic affine variety V one has
similar definitions: K[V ] = K[X1, . . . , Xn]/I(V ) is the affine coordinate ring of V , and its
field of fractions K(V ) is called the affine function field of V .

Note that K(V ) is an integral domain since I(V/K) is prime.

Definition 6 (dimension of V , dimV ). The transcendence degree of the function field K(V )
over K defines the dimension of the affine variety V .

For example the dimension dimV of hypersurfaces (varieties that are given by a single
polynomial in n variables) defined by f ∈ K[X1, . . . , Xn] is n− 1.

Definition 7 (smoothness/non-singularity). An affine variety V is said to be smooth (or
non-singular) at P = (x1, . . . , xn) ∈ V if the l × n matrix of partial derivatives evaluated at
P ∈ V

M = (
∂fi

∂Xj
(P )), 1 ≤ i ≤ l, 1 ≤ i ≤ n (2.7)

has rank(M) = n− dim(V ). If V is non-singular at every point, then V is called smooth (or
non-singular).

For a hypersurface S one has that S is singular at P ∈ S if and only if

∂f

∂X1
(P ) = 0, . . . ,

∂f

∂Xn
(P ) = 0 (2.8)

simultaneously. In all the other cases the hypersurface S is non-singular at P ∈ S.
Now a slightly generalized notion of projective varieties is defined and all introduced

objects are represented in a new form. The n-dimensional projective space Pn = Pn(K) over
K is the set of all lines through the origin in An+1. In other words the point [x0, . . . , xn] in
Pn is defined through an equivalence class of points in An+1 in the following way:

Pn(K) = {(x0, . . . , xn) : xi ∈ K and at least one xi is nonzero}/ ∼, (2.9)

1Note that it is not necessary for every set of the generating polynomials to be defined over K. But it is
really required that there should be a set of generating polynomials over K.

15



where ∼ is the equivalence relation

(x0, . . . , xn) ∼ (x
′
0, . . . , x

′
n)⇐⇒ ∃λ ∈ K ∀i : xi = λx

′
i. (2.10)

The equivalence classes {(λx0, . . . , λxn)} = [x0, . . . , xn] are called projective points. The
coordinates used are called homogeneous coordinates. The set of K-rational points of Pn(K)
is the following subset of Pn(K):

Pn(K) = {[x0, . . . , xn] ∈ P
n(K) : ∃λ ∈ K ∀i : λxi ∈ K} ⊂ P

n(K). (2.11)

Note that this does not automatically mean that for all P = [x0, . . . , xn] ∈ Pn(K) all xi ∈ K.
But this does mean that through choosing some i with xi 6= 0 one has ∀j : xj/xi ∈ K. By
dividing all coordinates through xi one gets 1 at the place i and elements from K at the other
places. So it can assumed by definition that

Pn(K) = {[x0, . . . , xn] : ∀i xi ∈ K}. (2.12)

Moreover, one can prove that Pn(K) = {P ∈ Pn(K) : σP = P, ∀σ ∈ GK/K}, there σP =
σ[x0, . . . , xn] = [σx0, . . . , σxn].
To give the corresponding definition of a projective variety one has to introduce the notion

of a homogenous ideal. Recall that a polynomial f ∈ K[X0, . . . , Xn] is called homogenous if
f(λX0, . . . , λXn) = λ

df(X0, . . . , Xn), ∀λ ∈ K. An ideal I ⊂ K[X0, . . . , Xn] is homogenous if
it is generated by homogenous polynomials. Putting

VI = {P ∈ P
n(K) : f(P ) = 0 ∀ homogenous f ∈ I} (2.13)

one can proceed with

Definition 8 (projective algebraic set V , homogenous ideal of V , rational points of V ). The
set VI is a projective algebraic set. The homogenous ideal of V is

I(V ) =< f ∈ K[X0, . . . , Xn] : f is homogenous and f(P ) = 0 ∀P ∈ V > . (2.14)

The projective algebraic set V is said to be defined over K if I(V ) can be generated by
homogenous polynomials from K[X0, . . . , Xn]. This is denoted by V/K. If V is defined over
K, the set of its K-rational points is the set V (K) = V ∩ Pn(K).

Definition 9 (projective algebraic variety). A projective algebraic set V is called a projective
variety if its homogenous ideal I(V ) is prime in K[X0, . . . , Xn].

Note that to some extent one can (pairwise) identify affine and projective spaces, sets and
varieties since Pn contains many copies of An. In order to do this one needs the corresponding
mapping between An and Pn. Here some rigorous conclusions are omitted and the consider-
ation is limited to mapping between An and Pn without mentioning the homogenization and
dehomogenization of polynomials. The mapping φi from An to Pn is given by

φi : (y1, . . . , yn) 7→ [y1, . . . , yi−1, 1, yi, . . . , yn]. (2.15)

The mapping from Pn to An is given by

φ−1i : [x0, . . . , xn] 7→ (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi). (2.16)

Strictly speaking one should define the reverse mapping φ−1i from a subset Ui of points in P
n

which have the nonzero coordinate xi in order for the mapping to be well-defined. Therefore
one can identify An with the set Ui ⊂ Pn since φi is bijective. If V is a projective algebraic

16



set then V ∩An = φ−1i (V ∩Ui) is an affine algebraic set for some appropriate i. This resulting
affine algebraic set2 V ∩An is called the affine part of V . For a projective variety (projective)
points in V − (V ∩ An) are called points at infinity on V .
Now the properties of projective varieties can be defined through those of affine varieties.

Definition 10 (dimension of V , coordinate ring of V , field of fractions of V ). Let V/K
be a projective variety over K. The dimension of V/K is the dimension of its affine part
V/K ∩An. The coordinate ring K[V ] of V/K and the function field K(V ) of V/K are those
of its affine part V/K ∩ An.

Definition 11 (non-singularity/smoothness). The projective variety V is smooth (or non-
singular) at P = (x0, . . . , xn) ∈ V if the V ∩An is smooth at φ

−1
i (P ) = (y1, . . . , yn) ∈ A

n for
some appropriate i.

From now on one can study affine algebraic varieties identifying the corresponding pro-
jective ones with their affine parts and recalling the projective nature of the varieties under
consideration when necessary. An algebraic curve is an algebraic variety of dimension 1. A
plane algebraic curve over K is a hypersurface given by a polynomial in two variables from
K[X1, X2]. An algebraic curve is smooth (or non-singular) if the corresponding algebraic va-
riety is smooth. In the sequel we concentrate on non-singular algebraic varieties V generally
and on non-singular algebraic curves C specifically.

Definition 12 (local ring of C at P ). Let C be a non-singular algebraic curve and P ∈ C.
The local ring K[C]P of C at P is

K[C]P = {
f

g
∈ K(C) : f, g ∈ K[C], g(P ) 6= 0}. (2.17)

For every rational function F from K[C]P the evaluation of F (P ) at P is well-defined.
The functions from K[C]P are said to be regular (or defined) at P . Note that the local ring
of C at P coincides with the localization of K[C] at its ideal MP = {f ∈ K[C] : f(P ) = 0}.
For the fraction field R of the local ring K[C]P there exists a mapping v : R

∗ → Z of its
multiplicative group to the ring of integers such that:

• v(xy) = v(x) + v(y), i.e., v is the group homomorphism;

• v(x+ y) ≥ min(v(x), v(y)).

Then v is the discrete valuation of R with R = K(C). Moreover, there exists such v that the
following proves to hold:

K[C]P = {x ∈ R
∗ : v(x) ≥ 0} ∪ {0}. (2.18)

That is the normalization ring of v. Therefore the integrity domainK[C]P is discrete valuation
ring. By definition v(0) = ∞. For smooth algebraic curves under consideration K[C] is a
Noetherian domain of dimension 1. Together with the property that K[C]P is a discrete
valuation ring this leads to the definition of a Dedekind domain. That is, the Dedekind
property of K[C] captures the smoothness and dimension one property of C. Now one can
define the mapping v over its normalization ring more explicitly:

vP : K[C]P → {0, 1, . . . , } ∪ {∞},
vP : f 7→ max{d ∈ Z : f ∈Md

P }.
(2.19)

2The set V ∩ An can be empty. That means that one has to choose the affine space An properly.

17



The domain of vP can be extended to the field R = K(C) of fractions of K[C]P using
vP (

f
g ) = vP (f)− vP (g) with:

vP : K(C)→ Z ∪ {∞}. (2.20)

Therefore vP is a discrete valuation of the fraction field K(C) of the curve C.

Definition 13 (fractional ideal, invertible ideal). For a non-singular curve C K[C]-submodule
M ⊂ K(C) is a fractional K[C]-ideal, if ∃f ∈ K(C)∗ : fM is an ideal of K[C]. The K[C]-
submodule M ⊂ K(C) is an invertible ideal, if there exists a K[C]-submodule N ⊂ K(C):
NM = K[C].

The fractional ideal invertibility property of K[C] is exactly captured by the Dedekind
property of K[C]. That is, an integral domain is a Dedekind domain if and only if every
fractional ideal of it is invertible. Hence, the non-zero fractional K[C]-ideals form a group
with respect to the operation of ideal multiplication. This group is called the ideal group of
the ring K[C] and is denoted by I. I is a free abelian group generated by non-zero prime
ideals of K[C]. An element f ∈ K(C) defines a fractional K[C]-ideal (f) which is called a
principle fractional ideal. The set of all principle fractional ideals forms a (multiplicative)
subgroup P in I, P / I. The quotient group I/P is called the ideal class group which is
denoted by HK(C). HK(C) for hyperelliptic curves will be the main object of the current
study.

2.1.2 Basic arithmetic of hyperelliptic curves

In this subsection the definition of a (imaginary quadratic) hyperelliptic curve is given. The
isomorphisms, divisor class group Pic0K(C), explicit representation of elements in the ideal
class group HK(C) and the basic algorithm to perform the group law in HK(C) are discussed.

Definition 14. A non-singular algebraic curve C/K is called a hyperelliptic curve if the
function field K(C) is a separable extension of degree 2 of the rational function field K(x)
for some function x. Let ω denote the nontrivial automorphism of this extension. It induces
an involution ω∗ on C. Points on C with P = ω∗(P ) are called Weierstraß points. It is
assumed3 here that there is one Weierstraß K-rational point on C/K denoted by P∞ —
a point at infinity: P∞ 6∈ A2(K), but P∞ ∈ P2(K). Under this assumption a (imaginary
quadratic) hyperelliptic curve C of genus g over K (g ≥ 1) is a smooth algebraic curve
defined by the following equation in two variables:

C : y2 + h(x)y = f(x) ∈ K[x, y], (2.21)

where h(x) ∈ K[x] with deg(h) ≤ g, f(x) ∈ K[x] is a monic polynomial with deg(f) = 2g+1.

The smoothness property means that there is no affine point P = (x, y) ∈ C at which

2y + h(x) = 0 and h′(x)y − f ′(x) = 0 (2.22)

simultaneously. Note that the homogenized equation of C has a singularity at P∞.
Often it is important to find out what equivalent forms of curve equations are applicable.

The maps:
y 7→ u5y′ + ax′2 + bx′ + c and
x 7→ u2x′ + e,
where a, b, c, e, u ∈ K,u 6= 0,

(2.23)

3By doing this one reduces the class of hyperelliptic curves treated. But for cryptographic purposes in the
context of the current consideration it suffices to consider this class of hyperelliptic curves (called imaginary
quadratic hyperelliptic curves) only.

18



act on points of C and are invertible. These changes of variables are the only ones leaving
invariant the shape of the defining equation and are the only admissible isomorphisms of
hyperelliptic curves.

Definition 15 (divisor group Div(C), divisor D, support of D, degree of D). The divisor
group Div(C) of a (imaginary quadratic) hyperelliptic curve C is the free abelian group gen-
erated by the points of C. An element D ∈ Div(C) is called a divisor. From the definition of
a free group it follows that:

D =
∑

P∈C

nPP, (2.24)

where nP ∈ Z and only a finite number of the nP are non-zero. For D the set supp(D) of
such points at which nP are non-zero is called the support of D:

supp(D) = {P ∈ C : nP 6= 0}. (2.25)

The degree deg(D) of D is the sum of nP for all the points from the support:

deg(D) =
∑

P∈supp(D)

nP . (2.26)

The addition of two divisors D1 and D2 is defined by:

D1 +D2 =
∑

P∈C

nPP +
∑

P∈C

mPP =
∑

P∈C

(nP +mP )P. (2.27)

Hence, the divisors of degree 0 form the subgroup Div0(C):

Div0(C) = {D ∈ Div(C) : deg(D) = 0} C Div(C). (2.28)

Note that automorphisms from GK/K act on Div(C) by acting on the coordinates of the

points in supp(D). The divisor D is said to be defined over K if ∀σ ∈ GK/K it holds that:

σD = σ(
∑

P∈C

nPP ) =
∑

P∈C

nPσP = D. (2.29)

Divisors defined over K form a subgroup DivK(C) C Div(C). The discrete valuation vP of
K(C) allows one to define the following mapping:

div : K(C)∗ → Div(C),
div : f 7→

∑
P∈C vP (f)P.

(2.30)

This map possesses one crucial property which is very useful in applications:

div(σf) = σ div(f), (2.31)

and, consequently, if f ∈ K(C), then div(f) ∈ DivK(C). That is, the elements of div(K(C)∗) C
DivK(C) can be represented by rational functions with coefficients in K = GF(q). This prop-
erty is retained by the following constructions which are further specifications of DivK(C)
and Div0K(C).

Definition 16 (principle divisor, Picard group). D ∈ Div(C) is called a principle divisor if
∃ f ∈ K(C)∗ with div(f) = D. Principle divisors form a subgroup P C Div(C) of the divisor
group of C. The quotient group Pic(C) = Div(C)/P is called the Picard group of C. PicK(C)
is the subgroup4 of Pic(C) which is fixed by all σ ∈ GK/K .

4Note that generally speaking PicK(C) 6= DivK(C)/PK .

19



For each f ∈ K(C) deg(div(f)) = 0. This means that P C Div0(C). Thus, one can build
the quotient group of Div0(C) by P which leads to the following very important

Definition 17 (degree 0 part Pic0(C) of Pic(C), Pic0K(C), equivalent divisors). The degree
0 part Pic0(C) of Pic(C) is given by: Div0(C)/P. Pic0K(C) is the subgroup of Pic

0(C) fixed
by all σ ∈ GK/K . For D1, D2 ∈ Div

0(C) we write D1 ∼ D2 if D1 −D2 ∈ P.

From now on Pic0(C), and specifically Pic0K(C), of a hyperelliptic curve C in the imaginary
quadratic form is considered and some of its properties (including representation) are stated
more explicitly. It is possible to show that for C there is an abelian variety (a projective
algebraic group) JC which is called the Jacobian variety (Jacobian) of C (here the exact
construction of JC is omitted, see [8]). The group JC(K) of K-rational points of JC is
isomorphic to the divisor class group Pic0K(C): JC(K) ∼= Pic

0
K(C). In the following we will use

the notions of JC(K) and Pic0K(C) as synonyms meaning that we can endow Pic
0(C) with the

structure of an abelian variety and consider its K-rational points. (For the rigorous definition
of the connection between Pic0(C) and JC see [54] or [8].) Moreover, for hyperelliptic curves
there is another representation of Pic0K(C). This is the ideal class group HK(C). Therefore
one has 3 equivalent group representations (for details see [8]):

JC(K) ∼= Pic0K(C) ∼= HK(C). (2.32)

The representation through the ideal class group is the most constructive one and gives rise
to the Mumford representation.

Definition 18 (semi-reduced divisor, reduced divisor). A semi-reduced divisor is a divisor
of the form

D =
∑

miPi − (
∑

mi)P∞, (2.33)

where:

• each mi ≥ 0,

• each Pi 6= P∞,

• Pi ∈ supp(D) and Pi ordinary ⇒ P̃i 6∈ supp(D),

• Pi ∈ supp(D) and Pi special ⇒ mi = 1.

A semi-reduced divisor D with deg(D) ≤ g is called a reduced divisor.

Each class of principle divisors in Pic0K(C) has a unique reduced divisor. Therefore each
element c ∈ Pic0K(C) can be identified with the corresponding reduced divisor. See [8] for the
detailed consideration or [39] for elementary proofs.
Recall that K = Fq and JC(Fq) ∼= Pic0Fq(C)

∼= HFq(C) for an imaginary quadratic hy-
perelliptic curve C. Then the following theorem (see [67] or [8]) states some very important
circumstances that are useful in order to do fast arithmetic in JC(Fq).

Theorem 1 (Mumford representation). Each nontrivial ideal class from the ideal class group
HFq(C) can be represented via the corresponding unique ideal J ⊂ Fq[C] generated

5 by such
polynomials a(x) and b(x)− y, a, b ∈ Fq[x] that:

1. a is monic,

2. deg b < deg a ≤ g,

5That is, J =< a(x), y − b(x) >= Fq[x]a(x) + Fq[x](b(x)− y).

20



3. a|b2 + bh− f = N(b(x)− y).

Moreover, let D = (
∑r
i=1miPi) − (

∑r
i=1mi)P∞ with Pi 6= P̃j, Pi 6= P∞, for i 6= j and with

(
∑r
i=1mi) = m = degD ≤ g be a reduced divisor. Let Pi = (xi, yi), xi, yi ∈ Fq, i ∈ {1, . . . , r}

denote the point from its support. Then:

1. a(x) =
∑r
i=1(x − xi)

mi (a is defined by the x-coordinates of the points from supp(D)
and their multiplicities),

2. ∀Pi 6= P∞ ∈ supp(D) : b(xi) = yi (b interpolates the points in supp(D)).

The transfer from a rational function f ∈ K(C)∗ to the corresponding (principle) divisor
is performed through the discrete valuation vP of K(C)

∗. Here vP is defined explicitly for a
hyperelliptic curve C. At first vP is explicitly defined for K[C]

∗. Assume f = a(x)− b(x)y ∈
K[C]∗ and P ∈ C. Then:

P = (x0, y0) 6= P∞: Let r be the highest power of (x − x0) which divides both a(x) and
b(x), and write f(x, y) = (x− x0)r(a0(x)− b0(x)y).

• If a0(x0)− b0(x0)y0 6= 0, then let s = 0.

• Otherwise, let s be the highest power of (x−x0) which divides N(a0(x)−b0(x)y) =
a0(x)

2 + a0(x)b0(x)h(x)− b0(x)2f(x). If P is ordinary, then define vP (f) = r+ s.
If P is special, then define vP = 2r + s.

P = P∞: Define vP (f) = −max[2 deg(a), 2g + 1 + 2deg(b)].

The discrete valuation of fg ∈ K(C)
∗ is defined by vP (

f
g ) = vP (f)− vP (g).

The transfer from the representation [a, b] of an element in the ideal class group HK(C)
to the reduced divisor in the corresponding class c in Pic0K(C) is performed using

Definition 19 (the greatest common divisor of two divisors). Let D1 =
∑
P∈C mPP −

(
∑
P∈C mP )P∞ and D2 =

∑
P∈C nPP−(

∑
P∈C nP )P∞ be two divisors. The greatest common

divisor of D1 and D2 is defined to be

gcd(D1, D2) =
∑

P∈C

min(mP , nP )P − (
∑

P∈C

min(mP , nP ))P∞. (2.34)

Then the transfer can be expressed as [a, b] = gcd(div(a(x)), div(b(x)− y)).
Below some results about the cardinality of the Jacobian JC(Fq) over a hyperelliptic curve

are formulated. To do this one needs the following

Definition 20 (zeta function). Let C be a hyperelliptic curve defined over Fq, and let Mr =
#C(Fqr), r ≥ 1, denote the number of Fqr -rational points on the curve C. The zeta function
of C is the power series:

ZC(t) = exp (
∑

r≥1

Mr
tr

r
).

Then some important statements hold. They are put together in the following

Theorem 2 (properties of the zeta function). Let C be a hyperelliptic curve of genus g
defined over Fq, and let ZC(t) be the zeta-function of C.

1. ZC(t) ∈ Z(t). More precisely,

ZC(t) =
P (t)

(1− t)(1− qt)
,

where P (t) is a polynomial of degree 2g with integer coefficients and has the form:

P (t) = 1+a1t+ ∙ ∙ ∙+ag−1t
g−1+agt

g+qag−1t
g+1+qag−2t

g+2+ ∙ ∙ ∙+qg−1a1t
2g−1+qgt2g

21



2. P(t) factors as:

P (t) =

g∏

i=1

(1− αit)(1− αit),

where each αi ∈ C of absolute value
√
q, and αi denotes the complex conjugate of αi.

3. The following equation holds:

#JC(Fql) =
g∏

i=1

|1− αli|
2,

where | ∙ | denotes the usual complex absolute value.

One of the direct applications of this theorem is the estimation of the bounds on the
order of the group of Fq-rational points on the Jacobian of a hyperelliptic curve C which is
formulated as

Corollary 1. Let C be a hyperelliptic curve of genus g defined over Fq. Then

(ql/2 − 1)2g ≤ #JC(Fql) ≤ (q
l/2 + 1)2g.

Hence, #JC(Fql) ≈ q
lg. In particular,

• For l = 1 one has
(q1/2 − 1)2g ≤ #JC(Fq) ≤ (q

1/2 + 1)2g,

or #JC(Fq) ≈ qg.

• For l = 1 and g = 1 one has an elliptic curve (a hyperelliptic curve of genus 1) and
get the theorem of Hasse for the bound on the trace of Frobenius t at q: Under the
assumption that

#JC(Fq) = #EC(Fq) = q + 1− t

one gets
|t| ≤ 2

√
q.

A straightforward approach to the group operation in JC(Fq) is to use Cantor’s algorithm
which adds reduced divisors and consists of 2 subalgorithms that perform the combination
of two reduced divisors and the reduction of the obtained semi-reduced divisor respectively.
This algorithm works with reduced divisors of hyperelliptic curves of every genus. Being
based on the Gauß algorithm for composing bilinear quadratic forms, it was proposed by
Cantor in [16] and generalized by Koblitz in [38]. Throughout the algorithm the notations
div(a, b) ∈ Pic0Fq(C) and [a, b] ∈ HFq are used as synonyms meaning that there exists group

isomorphism between the ideal class group HFq(C) and divisor class group Pic
0
Fq(C).

Algorithm 1 (composition)

Input: two reduced divisors D1 = div(a1, b1), D2 = div(a2, b2) ∈ Pic0Fq(C) in the Mumford
representation

1. d1 = gcd(a1, a2) = e1a1 + e2a2, d1, e1, e2 ∈ Fq[x]

2. d = gcd(d1, b1 + b2 + h) = c1d1 + c2(b1 + b2 + h), d, c1, c2 ∈ Fq[x]

3. s1 = c1e1, s2 = c1e2, s3 = c2, so that d = s1a1+s2a2+s3(b1+b2+h), s1, s2, s3 ∈ Fq[x]

22



4. a = a1a2
d2
, b = s1a1b2+s2a2b1+s3(b1b2+f)

d mod a, a, b ∈ Fq[x]

Output: D = div(a, b) ∼ D1 +D2, semi-reduced divisor.

Algorithm 2 (reduction)

Input: D = div(a, b), semi-reduced divisors

1. a′ = f−bh−b2

a , b′ = (−h− b)mod a′, a′, b′ ∈ Fq[x]

2. If degx a
′ > g then a = a′, b = b′ and go to step 1.

3. Make a′ monic: a′ = c−1a′, where c ∈ Fq is the leading coefficient of a′

Output: D′ = div(a′, b′) ∼ D1+D2, the (unique) reduced divisor in Mumford representation.

For elementary (but rigorous) proofs of the correctness of these algorithms see [39]. Among
other things note that the division at Step 1 in Algorithm 2 is exact by construction.
The group law in the degree zero part of the Picard group is illustrated by the example of

a genus 2 curve over the reals R. One is going to add two reduced divisors D1 = P1+P2−2P∞
and D2 = Q1 + Q2 − 2P∞ over C (see6 Fig. 2.1). The four points P1, P2 and Q1, Q2 (i.e.
the composition of the degree 2 divisors D1 = P1 + P2 − 2P∞ and D2 = Q1 + Q2 − 2P∞)
define a cubic function (since every m > 1 points give rise to a polynomial of degree m−1 by
interpolation) which has at most 6 points of intersection with C (of degree 5). The other 2
points (which are uniquely defined by the four points ofD1 andD2) of intersection are denoted
by −R1 and −R2. Their inflection with respect to the x-axis (the reduction procedure) leads
to the sum D of D1 and D2: D = R1 +R2 − 2P∞ ∼ D1 +D2.

Figure 2.1: Addition in JC(R). Genus 2 hyperelliptic curve over the reals.

6Courtesy of Tanja Lange and Nicolas Thériault.

23



One of the research goals pursued here is to perform the group operation explicitly for
genus 2 curves over finite fields using the coefficients of the polynomials of the curve equation
and divisor representations. This selection of the genus is motivated by security requirements.
For further explanations see Section 2.2.

2.2 Special mathematical attacks in JC(Fq)

In this section the DLP in the Jacobians of hyperelliptic curves is discussed. Assume
|JC(Fq)| = k is prime. Then the generic methods to solve the DLP in JC(Fq) give the
highest bound of complexity which is equal to O(

√
k). The goal is to describe such hyperel-

liptic curves for which there are no known methods which bring down the complexity of the
DLP in JC(Fq) with respect to O(

√
k). It turns out that if one wants to have an exponential

complexity of the DLP in JC(Fq) for some hyperelliptic curve the consideration should be
limited to genera 1,2 or 3. Even for g = 3 one has to take some countermeasures. Moreover,
some other precautions should be taken due to pairings. The motivation of these statements
can be found below. In the course of this section it is assumed that D1 ∈ JC(Fq) generates
JC(Fq). Let D2 ∈ JC(Fq) and D1 = lD2. The adversary wants to find l from D2, D1 and the
group structure.

2.2.1 Index calculus attack for JC(Fq)

The index calculus is the most powerful attack on hyperelliptic crypto systems. The idea
behind it rests upon the notion of smoothness with respect to a set of small irreducible
elements. A framework for the construction of the index calculus attacks in different class
groups can be found in [26]. In case of JC(Fq) ∼= Pic0Fq(C) for a hyperelliptic curve C we deal
with classes which can be represented by reduced divisors. A reduced divisor D ∈ JC(Fq)
with Mumford representation D = div(a, b), a, b ∈ Fq[x] is called prime if the first polynomial
a ∈ Fq[x] is irreducible over Fq. A divisor D ∈ JC(Fq) is called t-smooth if it can be
decomposed so that:

D = div(a, b) =
l∑

i=1

ei div(ai, bi), (2.35)

where ei ∈ Z and max{deg(ai)} ≤ t, i = 1, . . . , l. the polynomials a, b, ai, bi and numbers ei
are related with each other in the following way:

a =
∑l
i=1 a

ei
i ,

bi = a mod ai.
(2.36)

It is clear that to get ai (and therefore bi and ei) one has to factor a over Fq.
There are two basic approaches to implement the index calculus for hyperelliptic curves:

1. |JC(Fq)| is unknown: First, the factor base S = {P1, . . . , Pn} consisting of prime divisors
Pi = div(ai, bi) with deg(ai) ≤ t for some threshold t is build. Second, m > n t-smooth
divisors are searched for, each yielding a relation in the form

∑
j ejPj ∼ 0. If the prime

divisors in S generate JC(Fq), then the following mapping exists:

φ : (Zn)T → JC(Fq),
φ : (e1, . . . , en)

T 7→
∑
j ejPj .

(2.37)

Each relation yields an element ~ei
T = (ei1, . . . , ein) ∈ Ker(φ). If the set of m relations

forms a complete generating system of Ker(φ), then JC(Fq) ∼= Z/d1Z ⊕ ∙ ∙ ∙ ⊕ Z/dnZ.

24



Moreover, for all i’s the group order di and generator Xi of Z/diZ can be found from
the matrix A = (~e1 . . . ~em) using linear algebra. Then we should find representations of
D1 and D2 in Z/d1Z⊕ . . .⊕Z/dnZ. If D1 and D2 are generated by S, then:

D1 =
∑n
i=1 αiPi, D2 =

∑n
i=1 βiPi, and

D1 =
∑n
i=1 α

′
iXi, D2 =

∑n
i=1 β

′
iXi

(2.38)

for some integer values αi, α
′
i, βi, β

′
i. At last, l ∈ Z can be found by using the Chinese

remaider theorem from the following congruence system:

α′i ≡ lβ
′
imod di, i = 1, . . . , n. (2.39)

2. |JC(Fq)| is known: First, the factor base S = {P1, . . . , Pn} is constructed. S consists of
prime divisors Pi = div(ai, bi) with deg(ai) ≤ t. Second, try to find t-smooth divisors
of the form:

αD1 + βD2 ∼ Ri =
∑

eijPj . (2.40)

over S. As soon as (n+1) different relations are found, search for a set of values γi,
i = 1, . . . , n+ 1 with

∑n+1
i=1 γiRi = 0 by solving the following system of equations:

n+1∑

i=1

γi(ei1, . . . , ein) = (0, . . . , 0)mod |JC(Fq)|. (2.41)

This implies that
∑n+1
i=1 γi(αiD1 + βiD2) = 0, and:

l = −

∑n+1
i=1 γiαi∑n+1
i=1 γiβi

mod |JC(Fq)|. (2.42)

The first application of this attack for hyperelliptic curves was specified in [1] (so-called
ADH algorithm) and uses the first method. The ADH algorithm can be shown to run in
expected time O(Lq2g+1 [c]) for some positive real constant c < 2.313 (the prove of the bound
on c makes use of some unproved assumptions). But this method implies no cardinality of
JC(Fq) known. However, for large genera this turns out to be efficient.
In cryptography |JC(Fq)| is, however, almost always known. Since the DLP in the Jaco-

bians for large genus curves is not exponential, it was interesting what complexity the DLP
in the Jacobians for small genus curves provides. Gaudry [29] was the first to take the sec-
ond approach (with known |JC(Fq)|) and gave a very efficient algorithm. It uses 1-smooth
divisors in the factor base and a special random walk at the second stage. Gaudry showed
that his algorithm runs in expected time O(g3q2 log2 q + g2g!q log2 q) for some fixed genus g
and the underlying finite field with q elements. The generic DLP algorithms have complexity
of O(qg/2). That is, the Gaudry’s algorithm solves the DLP faster than the generic ones
for g > 4. Thériault [80] has improved Gaudry’s algorithm by refusing to use all 1-smooth
divisors in the factor base and restricting himself to a fraction of 1-smooth divisors. This
augments the time necessary to build the system of relations, but speeds up the solution
of the resulting equation system. Thériault’s improvement provides a lower complexity of

O(g5q
2− 2

g+1
+ε
). This algorithm is asymptotically faster than Gaudry’s one if q > (g − 1)!.

Thériault gives a modification of his algorithm through using the large prime strategy7. In

this case the runtime is O(g5q
2− 4

2g+1
+ε
). This modified algorithm is asymptotically faster than

Gaudry’s one if q > (g−1)!
g . Thériault’s algorithm solves the DLP in JC(Fq) asymptotically

faster than generic ones for g ≥ 3.

7That is, he looks for relations generated by the factor base and one additional ’large prime’ divisor.

25



Thus, the genus is a very important security parameter if one wants to apply hyperelliptic
curves as the base for cryptographical protocols. For the time being (with group sizes which
are currently treated as cryptographically suitable) we can state that the usage of the schemes
based on hyperelliptic curves of genus 1 and 2 offers the best possible security (with respect
to the DLP algorithms in a generic group). For elliptic curves (g = 1) there could be some
special attacks, but we are aware of no generic algorithms which could solve the DLP in
JE(Fq) for some elliptic curve E faster than those for arbitrary groups. The security of the

DLP in the Jacobians over genus 3 hyperelliptic curves are somewhat lower - O(q
4
3
+ε) instead

of O(q
3
2 ) in case the Jacobian were a ’black box’ group.

2.2.2 Transfer attacks for JC(Fq)

Instead of solving the DLP in JC(Fq) one can try to find an appropriate transfer of the
problem to some other structures in which it is easier to compute discrete logarithms. Here
we mention pairings and Weil descent. These attacks are efficiently applied to some special
curves only, but they show that some curves over which the index calculus gives no advantage
may nevertheless lead to vulnerabilities. This circumstance excludes the possibility to use
certain subclasses of curves for the construction of secure cryptographical systems.
Let k be the order of the group JC(Fq) with q = pd. If k|q then one can build JC(Fq) in

polynomial time into the vector space of dimension g over Fq (i.e. it is possible to efficiently
transfer JC(Fq) into a subgroup of this space ). It this group the DLP can be solved using
O((2g − 1) logc(q), where c is a small constant.
If (q, k) = 1, then there is another possibility to use pairings destructively. Namely it

is known that due to Tate-Lichtenbaum pairing (which is not rigourously defined here) it is
possible to efficiently transfer the DLP in JC(Fq) to (a subgroup of) the multiplicative group
of the extension field Fqc for some positive integer c under the assumption that k|(qc − 1).
More precisely we have the following

Theorem 3. If (k, q) = 1 and c ∈ N is minimal with k|(qc − 1), then there is a map:

Tk : JC(Fq)[k]× JC(Fqc)→ F∗qc/(F
∗
qc)
k (2.43)

with the non-degenerate image. For a random element D ∈ JC(Fqc) the mapping

Tk,D : JC(Fq)[k]→ F∗qc [k],

Tk,D : P 7→ (Tk(P,D))
qc−1
k

(2.44)

is an injective homomorphism of groups which is computable using O(c log q) operations.

Corollary 2. The DLP in JC(Fq) can be solved with complexity Lqc [1/2,
√
2].

That is, the DLP in JC(Fq) is subexponential in qc with k|qc − 1.
Now assume the extension degree of Fq over its prime subfield Fp is d > 1 and that there

exists d0 with d0|d, d0 < d. Then we can apply Weil descent (which is not defined here).
Then the DLP in JC(Fq) proves to be weak if d/d0 is small. If d is prime with 2t ≡ 1mod d
for some small t, then the DLP in JC(Fq) is weak too. For reasons see [8].
Thus, due to transfer attacks we have to restrict ourselves in the construction of secure

cryptographic systems to curves for which the following holds simultaneously:

• |JC(Fq)| prime to q,

• |JC(Fq)| prime to (qc − 1) for every small positive integer c,

• either d = 1 or Fq = GF(2d) for some prime d with ord(2) large in F∗d.

26



2.3 Explicit formulae for the group law in JC(Fq) of genus 2
hyperelliptic curves and a point compression technique

Due to the mentioned security restrictions the practical interest is limited to elliptic curves
and hyperelliptic curves of genus 2 and 3. Elliptic curves are not considered here, but we refer
to [13] or [8] thereupon. The case of g = 3 is treated in [8] and is as a rule slower8 as elliptic or
genus 2 curves at the same security level. Here one can find a review of the fast arithmetic of
genus 2 hyperelliptic curves over fields of odd and even characteristics. Some minor inaccuracy
in the special case of addition formulae for arbitrary characteristic is removed by the author in
Subsection 2.3.2. The author’s improvement of the point (de)compression technique in JC(Fq)
over a subclass of binary curves which can be found in Subsection 2.3.4. Moreover, a thorough
comparison between the most efficient cases in terms of operation count is provided on the
basis of the existing explicit formulae e.g. [8]. For comparisons in terms of processor time for
a contemporary multi-purpose platform see Section 2.4 where some available implementations
due to R. Avanzi [5] and E. Cesena [19] were used.
To do fast arithmetic in the ideal class groups of genus 2 hyperelliptic curves one should

concentrate efforts on finding ways to reduce the number of operations in the most frequent
cases. For the efficient computation of a scalar product one needs to be able to calculate
efficiently the following:

• D = D1 +D2,

• D = 2D1,

where D, D1, D2 are reduced divisors and D, D1, D2 ∈ JC(Fq). Every reduced divisor in
JC(Fq) can be represented through two polynomials (the Mumford representation): ∀D ∈
JC(Fq) : ∃[u, v] : D = gcd(div(u), div(y− v)), where u, v ∈ Fq[x], u is monic, deg v < degu ≤
g, u | v2 + vh − f = N(v − y). According to the called basic operations in the ideal class
group and to the representation of the elements we have two frequent cases:

• Addition: u1 = x2+u11x+u10, v1 = v11x+v10, and u2 = x2+u21x+u20, v2 = v21x+v20
with res(u1, u2) 6= 0 ⇒ ∀P ∈ supp(D1) : P and P̃ are not in supp(D2);

• Doubling : u1 = x2 + u11x+ u10, v1 = v11x+ v10 with res(h+ 2v1, a1) 6= 0 ⇒ P1 6= P̃1
and P2 6= P̃2.

All the formulae below work for these two cases only. The other cases are treated in [47] and
are relatively infrequent. If such a case occurs, then one can compute the result by applying
Cantor’s algorithm directly.

2.3.1 Equivalent curve equations

From Cantor’s algorithm it is clear that the group law in JC(Fq) and its concrete complexity
depend on the curve equation, this being logically the case for explicit formulae too. Assume
that f(x) = x5+f4x

4+f3x3+f2x
2+f1x+f0 and h(x) = h2x

2+h1x+h0, hi ∈ Fq, i = 0, 1, 2,
fi ∈ Fq, i = 0, . . . , 4.
Here some equivalent transformations of the curve equation with respect to the admissible

changes of variables are given. For different base field characteristics one obtains different
equations:

8This can be owing to the lack of research in this area.

27



char Fq = p, p 6= 5:[44] In this case one can always achieve that h2 ∈ {0, 1} and f4 = 0 by
replacing x→ x− f4/5 and y → y:

C : y2 + (h2x
2 + h1x+ h0)y = x

5 + f3x
3 + f2x

2 + f1x+ f0. (2.45)

char Fq = p, p is odd, p 6= 5: [44] The change of variables x→ x− f4/5, y → y − h/2 leads
to h(x) = 0, and f4 = 0:

C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0. (2.46)

In this case it can be shown that C is non-singular if and only if f(x) has no repeated
roots over Fq.

char Fq = 2: [51] In order for C over a binary field to be smooth h(x) must be non-zero,
h(x) 6= 0. Moreover, d should be preferably prime and h(x) 6= const, since some transfer
attacks can be efficient in these cases.

From considerations of group law efficiency one wants to treat different cases of h(x)
separately:

• deg(h) = 2: h2 6= 0. The (admissible) change of variables

y → h52y + f3h2x+
f3(f3+h1h2+f4h22)+f2h

2
2

h32
x→ h22x+ f4

(2.47)

and subsequent division by h102 leads to h2 = 1 and f4 = f3 = f2 = 0:

C : y2 + (x2 + h1x+ h0)y = x
5 + f1x+ f0. (2.48)

If ∃b : b2 + bh1 = h0, then there is a change of variables which leads to h2 =
1, h0 = 0 and f3 = f2 = 0:

C : y2 + (x2 + h1x)y = x
5 + f4x

4 + f1x+ f0, (2.49)

which allows faster doubling. There are at most 4 ∙23d isomoprhism classes of such
curves.

• deg(h) = 1: Hence, h2 = 0. By replacing:

y → a5y + a4
√
f4 + (h0/h1)x2,

x→ a2x+ (h0/h1)
(2.50)

and dividing through a10 one can obtain an isomorphic curve with f4 = f1 = h0 =
0:

C : y2 + h1xy = x
5 + f3x

3 + f2x
2 + f0. (2.51)

There are at most 4 ∙ 22d such curves. Note that in case of d being odd (e.g. d is
an odd prime) there is no non-trivial cubic roots of unity. That is, an a can be
always found with the property a3 = h1 and, hence, for odd d it can be assumed
that h1 = 1 in (2.51):

C : y2 + xy = x5 + f3x
3 + f2x

2 + f0. (2.52)

The number of the isomorphism classes of such curves is at most 2 ∙ 22d.

28



2.3.2 Correct addition and doubling in affine coordinates

To get efficient explicit formulae for performing the group law in JC(Fq) some tricks are ap-
plied to refine Cantor’s algorithm. Among other things Karastuba’s trick for multiplication of
polynomials, Montgomery’s trick for multiple inversions, exact division from the very begin-
ning, Chinese remainder theorem for polynomials are mentioned. For the precise breakdown
to the formulae see, for instance, [44]. In this subsection the explicit formulae for the most
frequent cases in arbitrary charFq 6= 5 (addition in Table 2.1 and doubling in Table 2.2) are
given. The author would like to use the opportunity to remove some minor inaccuracy in
these (otherwise entirely correct) formulae for addition and doubling which has apparently
taken place e.g. [45, 46, 44, 47] merely over an unfortunate misprint. The operation count
for the even characteristic in cases of deg(h) = 1 and deg(h) = 2 are given in Table 2.4 for
(2.48) , Table 2.3 for (2.49), and Table 2.5 for (2.52). In all the tables the total complexity
is provided in operations telling apart inversions (I), multiplications (M) and squarings (S)
in the base field Fq.

Table 2.1: Addition: g = 2, deg(u1) = deg(u2) = 2 (from [44] with minor modifications by the author)

Input: D1 = [x
2 + u11x+ u10, v11x+ v10], D2 = [x

2 + u21x+ u20, v21x+ v20]

1. z1 ← u11 − u21, z2 ← u20 − u10, z3 ← u11z1 + z2, r ← z2z3 + z
2
1u10 .

2. inv1 ← z1, inv0 ← z3.

3. w0 ← v10 − v20, w1 ← v11 − v21, w2 ← inv0w0, w3 ← inv1w1,

s′1 ← (inv0 + inv1)(w0 + w1)− w2 − w3(1 + u11), s
′
0 ← w2 − u10w3;

if s′1 go to Special case.

4. w1 ← (rs′1)
−1, w2 ← rw1, w3 ← (s′1)

2w1, w4 ← rw2, w5 ← w24, s
′′
0 ← s′0w2.

5. l′2 ← u21 + s
′′
0, l
′
1 ← u21s

′′
0 + u20, l

′
0 ← u20s

′′
0.

6. u′0 ← (s
′′
0 − u11)(s

′′
0 − z1 + h2w4)− u10,

u′0 ← u′0+ l
′
1+ (h1+2v21)w4+ (2u21+ z1− f4)w5, u

′
1 ← 2s

′′
0 − z1+ h2w4−w5.

7. w1 ← l′2 − u
′
1, w2 ← u′1w1 + u

′
0 − l

′
1, v
′
1 ← w2w3 − v21 − h1 + h2u′1,

w2 ← u′0w1 − l
′
0, v
′
0 ← w2w3 − v20 − h0 + h2u′0.

Output: D = [x2 + u′1x+ u
′
0, v
′
1x+ v

′
0] ∼ D1 +D2

Special case: Replace lines 4-7 by the following:
4. inv ← 1/r, s0 ← s′0inv.

5. u′0 ← f4 − u21 − u11 − s20 − s0h2.

6. w1 ← s0(u21 − u′0) + h1 + v21 − h2u
′
0, w2 ← u20s0 + v20 + h0, v

′
0 = u

′
0w1 − w2.

Total complexity:
I+22M+3S (common case)
I+12M+2S (special case)

For the addition of ideal classes with deg u1 = degu2 = 2 and res(u1, u2) 6= 0 for arbitrary

29



Table 2.2: Doubling: g = 2, deg(u) = 2 (from [44] with minor modifications by the author)

Input: D = [x2 + u1x+ u0, v1x+ v0]

1. ṽ1 ← h1 + 2v1 − h2u1, ṽ0 ← h0 + 2v0 − h2u0.

2. w0 ← v21, w1 ← ṽ1
2, w3 ← u1ṽ1, r ← u0w2 + ṽ0(ṽ0 − w3).

3. inv′1 ← −ṽ1, inv
′
0 ← v′0 − w3.

4. w3 ← f3 + w1, w4 ← 2u0, t′1 ← 2(w1 − f4u1) + w3 − w4 − h2v1,
t′0 ← u1(2w4 − w3 + f4u1 + h2v1) + f2 − w0 − 2f4u0 − h1v1 − h2v0.

5. w0 ← t′0inv
′
0, w1 ← t′1inv

′
1, s
′
1 ← (inv

′
0 + inv′1)(t

′
0 + t′1) − w0 − w1(1 + u1),

s′0 ← w0 − w1u0. If s′1 = 0 go to Special case.

6. w1 ← 1/(rs′1), w2 ← rw1, w3 ← (s′1)
2w1, w4 ← rw2, w5 ← w24, s

′′
0 ← s′0w2.

7. l′2 ← u1 + s
′′
0, l
′
1 ← u1s

′′
0 + u0, l

′
0 ← u0s

′′
0.

8. u′0 ← (s
′′
0)
2+w4(h2(s

′′
0 −u1)+2v1+h1)+w5(2u1− f4), u

′
1 ← 2s

′′
0 +h2w4−w5.

9. w1 ← l′2 − u
′
1, w2 ← u′1w1 + u

′
0 − l

′
1, v
′
1 ← w2w3 − v1 − h1 + h2u′1,

w2 ← u′0w1 − l
′
0, v
′
0 ← w2w3 − v0 − h0 + h2u′0

Output: D′ = [x2 + u′1x+ u
′
0, v
′
1x+ v

′
0] ∼ 2D

Special case: Replace lines 6-9 by the following:
6. w1 ← 1/r, s0 ← s′0w1, w2 ← u0s0 + v0 + h0,

7. u′0 ← f4 − s20 − s0h2 − 2u1,

8. w1 ← s0(u1 − u′0)− h2u
′
0 + v1 + h1, v

′
0 ← u′0w1 − w2

Total complexity:
I+22M+5S (common case)
I+13M+3S (special case)

Table 2.3: Addition and doubling in JC(Fq), g = 2, q even, deg(h) = 2, h0 = 0 [8]

Addition
(common case) I+22M+3S
(special case) I+12M+2S

Doubling
(common case) I+17M+5S
(special case) I+10M+3S

Table 2.4: Addition and doubling in JC(Fq), g = 2, q even, deg(h) = 2, h0 6= 0 [8]

Addition
(common case) I+22M+3S
(special case) I+12M+2S

Doubling
(common case) I+21M+6S
(special case) I+11M+4S

30



Table 2.5: Addition and doubling in JC(Fq), g = 2, q even, d odd, deg(h) = 1 [8]

Addition
(common case) I+21M+3S
(special case) I+12M+2S

Doubling
(common case) I+5M+6S
(special case) 3M+4S

genus 2 hyperelliptic curves explicit formulae due to T. Lange can be used (Table 1 in [47]
or Table 2.1 here). Though designed to work with affine coordinates (which imply inver-
sions), the formulae are very efficient and can be the optimal ones under some circumstances.
Moreover, they serve as basis for all the further refinements. Now some thoughts about the
computations in Step 6 in the special case are adduced. This step is the last one in the
addition for the special case. Here v′ = −h− (l + v2)modu′ is being computed:

v′ = (−h2 − s0)x
2 + (−h1 − s0u21 − v21)x+ (−h0 − s0u20 − v20)modx+ u

′
0.

Then one has x2 = (u′0)
2, x = −u′0 and, hence,

v′ = u′0[s0(u21 − u
′
0) + h1 + v21 − u

′
0h2] + [−h0 − s0u21 − v20].

This leads to the final result through v′ = u′0w1 − w2. Thus, one is supposed to use the
following formulae for this step:

• w1 = s0(u21 − u′0) + h1 + v21 − h2u
′
0,

• w2 = u20s0 + v20 + h0,

• v′0 = u
′
0w1 − w2.

Notice that this expression and the original one e.g. [44] differ in two signs and one addi-
tional multiplication. Assume h2 ∈ {0, 1}. Then one needs to perform 3 multiplications in
compliance with the formulae provided here as opposed to 2 multiplications in the original
formulae e.g. [44]. This leads to the following complexity in the special case of addition:
I+2S+12M. Though the considered case is relatively infrequent, it may arise in practice and
therefore appears in the table for the most frequent case of addition. A similar unfortunate
inexactness seems to have taken place in the special case of doubling and is removed in Table
2.2, Step 8 of the special case, but there are no operation count differences in this case under
the assumption that h2 ∈ {0, 1}.
Now some computational examples are given to illustrate the correctness of computations

in the special case of addition. The hyperelliptic curves used were taken from [39]. At first
a genus 2 hyperelliptic curve over GF (25) is considered. Let F25 = GF (25) be defined by
ϕ = u5 + u2 + 1, F25 ∼= GF (2)[u]/(u5 + u2 + 1), α being a root of the primitive (and,
hence, irreducible) polynomial ϕ. Let C be a hyperelliptic curve defined over GF (25) by
y2 + y(x2 + x) = x5 + x3 + 1. The formulae for the special case given in Table 2.1 have been
implemented in MAGMA and compared with the independent result obtained internally by
MAGMA through direct group operations in the Jacobian JC(Fq) of C. In all cases the results
agree with each other. One can find an example in Table 2.6. Now we proceed with an
example over F = GF (7). Let the curve be defined by y2+ yx = x5+5x4+6x2+ x+3. The
result of the corresponding computations can be found in Table 2.7.

31



Table 2.6: Addition of ideal classes in a special case, char F25 = 2

D1 [x2 + α5x+ α18, α22x+ α12]

D2 [x2 + α15x+ α8, α14x+ α2]

D1 +D2 [x+ α5, α15] ∈ JC(Fq)

Table 2.7: Addition of ideal classes in a special case, char F7 = 7

D1 [x2 + 6x+ 6, 6x+ 1]

D2 [x2 + 6, 4x+ 1]

D1 +D2 [x+ 2, 3] ∈ JC(Fq)

2.3.3 Addition and doubling in inversion-free coordinates

In real-world applications different operations have different complexity. As a rule, the in-
version is the slowest operation on contemporary common purpose processors and special
hardware platforms. The second slowest operation is usually multiplication. The fastest one
(from the set of the operations that have the most significant impact on the performance
of scalar multiplication in JC(Fq)) is squaring. It turns out [45], [46], [8] that one can find
such sets of coordinates9, which exclude the necessity to perform inversions while adding or
doubling points in JC(Fq) of genus 2 hyperelliptic curves. Recall that one has to perform one
inversion for each addition or doubling in affine coordinates.
It should pointed out that one gets different performance for the same operation while

computing in finite fields of different characteristics. In addition to the fact that hyperelliptic
curves have different curve equation representations for odd and even field characteristics,
the squaring in binary finite field can be performed through cyclic bit shifts if a normal basis
representation is used and, hence, is practically ’for free’. It means that distinct optimization
techniques should be applied in the study of the fast arithmetic over hyperelliptic curves with
respect to these two cases. This motivates their separate consideration.
At first, the case of odd characteristic is treated. A (reduced) divisor D = [x2 + u1x +

u0, v1x+v0] ∈ JC(Fq) in affine coordinates is represented as a quadruple of elements from the
base field Fq: D = [u1, u0, v1, v0]. Inversion-free arithmetic can be achieved through adding
some further values to these ones. For odd characteristic there are two basic inversion-free
coordinate systems: Projective (P) coordinates [45] and new (N ) coordinates [46]. For even
characteristic there is a further coordinate system called recent (R) which proves to be more
efficient in some cases. In projective coordinates an additional coordinate z 6= 0 is introduced
leading to a slightly modified representation of D through the quintuple D = [u1, u0, v1, v0, z]
of values from Fq. Writing this one means that the rigourous Mumford representation of the
divisor is D = [x2+ u1z x+

u0
z ,
v1
z x+

v0
z ]. The operation count in Table 2.8 for addition in the

introduced coordinates implies that we distinguish the inputs:

D1 = [u11, u10, v11, v10, z1] and
D2 = [u21, u20, v21, v20, z2]

(2.53)

with z1 6= 1, z2 6= 1 and those with z1 = 1, z2 6= 1.
In new coordinates it is suggested to use 2 additional coordinates Z1 6= 0 and Z2 6= 0

for each argument of the group law procedure with the following correspondence to the

9Note that these ’coordinates’ which are often called ’projective’ are no projective coordinates in the
mathematical sense. These are merely sets of variables which are calculated in the course of addition and
doubling, contain the necessary information about the inverted values needed to perform these operations and
allow relatively low operation count.

32



Table 2.8: Addition and doubling in JC(Fq), g = 2, projective coordinates, q odd

Addition
z1 = 1, z2 6= 1
z1 6= 1, z2 6= 1

47M+4S
40M+4S

Doubling 38M+6S

Mumford representation: The sextuple [u1, u0, v1, v0, Z1, Z2] corresponds to the ideal class
D = [x2+ u1

Z21
+ u0
Z21
, v1
Z31Z2

x+ v0
Z31Z2
]. To make the computations more efficient it is proposed to

add two auxiliary coordinates to these set: z1 = Z
2
1 and z2 = Z

2
2 (z2 being used by doubling

only) which leads to the following octuple of coordinates: D=[u1, u0, v1, v0, Z1, Z2, z1, z2].
These coordinates are called new [46].
Assume that

D1 = [u11, u10, v11, v10, Z11, Z12, z11, z12] and
D2 = [u21, u20, v21, v20, Z21, Z22, z21, z22].

(2.54)

Table 2.9: Addition and doubling in JC(Fq), g = 2, new coordinates, q odd [8]

Addition
Z11 = Z12 = z11 = z12 = 1
otherwise

37M+6S
47M+7S

Doubling 34M+7S

In Table 2.9 we give operation counts for addition and doubling in new coordinates. As
for the projective coordinates we distinguish between the cases of both Z11, Z12, z11, z12 and
Z21, Z22, z21, z22 not being equal to 1 simultaneously and of Z11 = Z12 = z11 = z12 = 1.
From Tables 2.8 and 2.9 it follows that doubling is faster by 4M in new coordinates (at

the cost of one additional squaring). In the common case the addition in new coordinates
is by 3S slower as in projective ones. In the special case of addition (affine input) new
coordinates enable the faster (by 3M at the expense of 2S) computation of the sum. The
exact interaction of the computational efficiency in projective and new coordinates depends
on the scalar multiplication method used which results in different numbers and types of
additions and doublings. This is discussed in Section 2.4.
Now we consider inversion-free coordinates in even characteristic. For even characteristic

we have two cases: deg(h) = 2 (curve equation 2.48) and deg(h) = 1 (curve equation 2.52).
The case of deg(h) = 2 is dealt with at first. Projective and new coordinates can be efficiently
adapted to this case. Projective coordinates are the same as for the case of odd characteristic.
The operation count for addition and doubling is given here in Table 2.10.

Table 2.10: Addition and doubling in JC(Fq), g = 2, projective coordinates, q even, deg(h) = 2 [8]

Addition
z1 = 1, z2 6= 1
z1 6= 1, z2 6= 1

39M+4S
49M+4S

Doubling 38M+7S

New coordinates should be changed if one wants to achieve a better performance. The new
coordinates specify a reduced divisor in the following way: D = [u1, u0, v1, v0, Z1, Z2, z1, z2, z3, z4]
meaning that the Mumford representation of D is

D = [x2 + u1
Z21
x+ u0

Z21
, v1
Z31Z2

x+ v0
Z31Z2
] with

z1 = Z
2
1 , z2 = Z

2
2 , z3 = Z1Z2, z4 = z1z3,

(2.55)

33



Z1 and Z2 being not used separately any more and, hence, we have the octuple: D =
[u1, u0, v1, v0, z1, z2, z3, z4]. The complexity of the corresponding formulae can be found in
Table 2.11.

Table 2.11: Addition and doubling in JC(Fq), g = 2, new coordinates, q even, deg(h) = 2 [8]

Addition
Z11 = Z12 = Z11 = Z12 = 1
otherwise

37M+5S
48M+4S

Doubling 37M+6S

The addition in new coordinates is faster by 1M in the common case and by 2M (at the
cost of 1S which is almost ’for free’ in binary fields) in case of the first input being affine.
The doubling in new coordinates is faster by 1M and 1S. Though there is no pronounced
advantage of new coordinates (which was the case for odd characteristic), they provide a
faster computation of the group law.
If deg(h) = 1, then some other coordinate sets can be applied to perform addition and

doubling, but projective and new coordinates are still applicable too. The projective coordi-
nates are like in case of odd characteristic. Table 2.12 summarizes the operation counts for
the respective formulae.

Table 2.12: Addition and doubling in JC(Fq), g = 2, projective coordinates, q even, deg(h) = 1 [8]

Addition
z1 = 1, z2 6= 1
z1 6= 1, z2 6= 1

37M+4S
47M+4S

Doubling 22M+6S

The new coordinates are omitted here, since there are more efficient coordinates if deg(h) =
1. These are called recent [8]. To represent a reduced divisor in recent coordinates one needs
a sextuple: D = [u1, u0, v1, v0, Z, z] giving rise to the following Mumford representation:

D = [x2 + u1Z x+
u0
Z ,

v1
Z2
x+ v0

Z2
] with z = Z2. (2.56)

The coordinate set was chosen to ensure very efficient doubling at the expense of slower
additions. The operation counts are represented in Table 2.13. Here it is always assumed
that the extension degree of Fq over GF(2) is odd.

Table 2.13: Addition and doubling in JC(Fq), g = 2, recent coordinates, q even, d odd, deg(h) = 1 [8]

Addition
z1 = 1, z2 6= 1
z1 6= 1, z2 6= 1

43M+7S
49M+8S

Doubling 20M+8S

One can see that doubling is extremely cheap in recent coordinates for deg(h) = 1 and
odd extension degree d.

2.3.4 A point (de)compression technique in JC(Fq) over binary fields

Here some thoughts about the ways to (de)compress a point in JC(Fq) of binary genus 2
curves with deg(h) = 1 are given. The approach discussed is based upon [49]. After the idea
had kindly been made clear to the author by T. Lange, he found a simple way to reduce the
number of operations needed of which the description can be found in this subsection. For

34



the point compression in JC(Fq) over fields of odd characteristic one is referred to [33] and
[78] or to [8] for a survey.
Here the case of binary hyperelliptic curves is discussed. Moreover, curves given by the

following equation are considered only:

y2 + h(x)y = f(x), where
h(x) = h1x,
f(x) = x5 + f3x

3 + f2x
2 + f0.

(2.57)

The divisor class [u, v] which defines the corresponding element in JC(Fq) is represented by:

{
u = x2 + u1x+ u0,
v = v1x+ v0.

(2.58)

It was suggested to store u instead of allocating memory for u and v. This requires twice less
memory space to store a reduced divisor and may be of advantage on some very constrained
platforms and such devices as cheap smart cards. To be able to decompress the value of
v (practically v1 and v0) it is necessary to store some further information as well. For the
decompression we make use of the fact that u|v2 + hv+ f for the reduced divisor [u, v] given
in the Mumford representation. In the concrete case one has that:

x2 + u1x+ u0|x
5 + f3x

3 + (v21 + h1v1 + f2)x
2 + h1v0x+ (v

2
0 + f0). (2.59)

Dividing out one has:

x5+f3x3+(v21+h1v1+f2)x
2+h1v0x+(v20+f0)

x2+u1x+u0
=

x3 + u1x
2 + (f3 + u0 + u

2
1) + c+

(h1v0+u0(f3+u0+u21)+u1c)x+u0c+v
2
0+f0

x2+u1x+u0
,

where

{
h1v0 + u0(f3 + u0 + u

2
1) + u1c = 0,

u0c+ v
2
0 + f0 = 0

with c = v21 + h1v1 + f2 + u1(f3 + u
2
1).

(2.60)

This (non-linear) system of equations has 2 unknown variables: v1 and v0. The way to solve
this system of equations suggested is to get c at first:

c =
1

u0
(v20 + f0) (2.61)

and to use the first equation to get v0 from the following one:

v′20 + v
′
0 + β1, where

β1 =
u1
h21
(f0u1
u20
+ c1),

v0 =
h1u0
u1

v′0 and c1 = f3 + u0 + u
2
1.

(2.62)

Then the concrete value of c is computed using (2.61). The rest of computations is done by
solving the quadric equation:

v′21 + v
′
1 + β2, where

β2 =
1
h21
(f2 + u1(f3 + u

2
1) + c) and v1 = h1v

′
1.

(2.63)

35



It is reasonable to require the value (h−11 )
2 to have been precomputed or computed by the

external control device on-line (the curve equation is not secret in the most security protocols).
In the cryptographically interesting case of d being odd we have no precomputations since
h1 = 1. Note that we have to solve 2 quadratic equations in (2.62) and (2.63) over Fq =
GF(2d). This can be easily done [13], since the equations have been brought to the canonical
form:

x2 + x+ β = 0. (2.64)

If x0 is a solution of this equation
10, then so is x0 + 1. If d is odd, then x0 can be found as

the half-trace of β:

x0 = τ(β) =

(d−1)/2∑

j=0

β2
2j
, (2.65)

which can be got through computing (d− 1) squarings and d−12 additions in Fq. In a normal
basis squarings (bitwise cyclic shifts) and additions (bitwise addition modulo 2, i.e. XOR)
are already for free (first of all in hardware). Now the algorithm to decompress a point from
u and 2 bits of additional information (Table 2.14) is given. Here Q denotes the complexity of
the solution of a quadratic equation in the canonical form over GF(2d) with d even. From the
table it follows that the decompression is extremely fast for hyperelliptic curves over GF(2d)
with d odd.

2.4 Efficiency of cryptographic systems based on genus 2 hy-
perelliptic curves

As a result of Section 2.3 one has a framework for building an effective DLP based public
key cryptographic system. To choose the best possible combination of coordinates for every
case one has to fix some scalar multiplication method11. There is no known optimal (in every
sense) scalar multiplication method. The designer has to analyse the used protocol and to
choose the optimal method for the specific application. Here a scalar multiplication method
called ’sliding window’ and numbers written in the width-w nonadjacent form (NAFw) are
discussed. This form seems to be optimal in a certain sense. Then scalar multi-multiplication
is mentioned. The section provides operation counts and concrete runtimes (on a multi-
purpose processor) for the scalar multiplication in JC(Fq) in different sets of coordinates for
odd and even char Fq and for different group sizes. Moreover, some comparisons with the
scalar multiplication in the group of points of elliptic curves (∼= JC(Fq) for an elliptic curve
C) can also be found here. The section ends in some reasoning about the cryptographical
suitability of arithmetic over hyperelliptic curves from the point of view of the possibility of
efficient implementation.

2.4.1 Scalar multiplication methods

Let G be an additive finite cyclic group of order n. Assume α ∈ G and k ∈ {1, 2, . . . , n}. The
easiest way to compute kα is binary scalar multiplication (double and add)12. The algorithm
is given in Table 2.15. Here the binary expansion representation of k = (kl−1 . . . k0)2, ki ∈
{0, 1}, i = 0, . . . , l − 1 (binary radix 2 representation) with k =

∑l−1
i=0 ki2

i is used. The
algorithm requires l doublings and on the average l/2 additions.

10The equation in the form (2.64) has solutions over Fq if and only if Trq|2(β) = 0.
11Note that one could use the notion ’exponentiation’ instead if one were working with multiplicatively
written groups. But dealing with additively written groups implies the notion ’scalar multiplication’.
12It is called square and multiply in multiplicative notation.

36



Table 2.14: Decompression of [u, v] ∈ JC(Fq), q = 2d (made up by the author on the basis of his
modification of the decompression technique)

Input: u, bits b1 and b2, precomputed h
−2
1

h1 6= 1, d even h1 = 1, d odd

1. Compute c1:
c1 ← f3 + u0 + u

2
1.

2. Compute γ0 = u
−1
0 and γ1 = u

−1
1 :

γ0 ← u0u1, γ0 ← γ−10 ,
γ1 ← u0γ0(= u

−1
1 ),

γ0 ← γ0u1(= u
−1
0 )

3. Compute β1:
β1 ← u1h

−2
1 (f0u1γ

2
0 + c1)

4. Solve (2.62) using b1 and get v
′
0.

5. Compute v0 and c:
v0 ← h1u0γ1v

′
0, c← γ0(v

2
0 + f0).

6. Compute β2:
β2 ← h−21 (f2 + c+ u1(c1 + u0)).

7. Solve (2.63) using b2 and get v
′
1.

8. Compute v1:
v1 ← h1v

′
1.

1. Compute c1:
c1 ← f3 + u0 + u

2
1.

2. Compute γ0 = u
−1
0 and γ1 = u

−1
1 :

γ0 ← u0u1, γ0 ← γ−10 ,
γ1 ← u0γ0(= u

−1
1 ),

γ0 ← γ0u1(= u
−1
0 )

3. Compute β1:
β1 ← u1(f0u1γ

2
0 + c1)

4. Solve (2.62) using b1 and get v
′
0.

5. Compute v0 and c:
v0 ← u0γ1v

′
0, c← γ0(v

2
0 + f0).

6. Compute β2:
β2 ← f2 + c+ u1(c1 + u0).

7. Solve (2.63) using b2 and get v
′
1.

8. Compute v1:
v1 ← v′1.

I+14M+3S+2Q I+10M+(d+ 2)S

Output: D = [u, v]

Table 2.15: ’Double and add’ scalar multiplication method

Input: α ∈ G, k = (kl−1 . . . k0)2 ∈ {1, 2, . . . , n− 1}

1. β ← 1

2. for i from l − 1 downto 0 do

β ← 2β

if ki = 1 then β ← α+ β

Output: β = kα

37



Note that it requires no additional memory and no precomputations. A further idea
is to use other ways to write out the representation of the scalar multiplier k. This leads
to 2 main groups of scalar multiplication algorithms. The first ones are based on a lager
radix b = 2w. The second group uses other (signed, i.e. digits can be negative) ways to
write k. The combination of the both ways which we will consider by the example of NAFw
delivers the most effective scalar multiplication methods. The consideration begins with
signed representations. Then algorithms for scalar multiplication on radix b = 2w and the
definition of NAFw are given.

k =
∑l−1
i=0 ki2

i is called a τ -representation, if τ is a set of integers and all ki ∈ τ ∪ {0}.
If τ contains negative integers, one speaks of signed representation, and if τ = {1,−1}, of
signed binary representations. This signed binary representation is said to be in non-adjacent
form (NAF), if kiki+1 = 0, i = 0, . . . , l− 1. This is denoted by (kl−1 . . . k0)NAF . In [58] NAF
is called a sparse signed-digit representation. NAF was introduced in [71] and since then
generalized by numerous researchers. It is known that ignoring leading zeros each integer
has a unique NAF representation. An algorithm to get the NAF of an integer in binary
expansion form is in Table 2.16. The NAF can be computed using simple look-ups from a
table of size 8 bit with elements of size 2 bit [58]. Moreover, the NAF representation provides
the minimal Hamming weight among all signed digit representations for k. Consequently,
the NAF representation of the scalar multiplier combined with the binary double-and-add
method is the optimal choice if it is possible to efficiently invert in G and no precomputations
are allowed. The expected number of non-zero terms in a NAF expansion of length l if all
possible scalar multipliers are uniformly distributed is l/3. Now one can change Algorithm
2.15 to achieve the best possible performance without precomputations. Assume the input is
in NAF. Then at step 1 we should additionally compute γ ← −α (the inversion in Pic0Fq(C)
is almost for free) and at step 2 we should add the following string to each iteration of the
cycle:

if ki = −1 then β ← γ + β. (2.66)

That is, if the base element α and the scalar multiplier k are not known in advance and
it is impossible to perform computations one has to perform l doublings and l/3 additions
accompanied by one group inversion. This algorithm can be the one of choice on some very
constrained platforms even if such protocols as generalized DSA or Diffie-Hellman are used
in which the base group elements are always known beforehand which enables us to tabulate
some values.
Assume the base group element is known beforehand only, the scalar multiplier being

chosen at random. If precomputations are allowed and some storage is available, one can use
the sliding window method (see Algorithm 2.17). Let k be in its binary expansion form. To
compute kα one precomputes the values 3α, 5α, . . . , 2t−1α first and stores them for future
use. Note that one has to compute the values with odd factor only. Then one reads the
scalar multiplier k from the left to the right considering t consequent bits at once (a sliding
window of length t bits). If the most significant bit in the window under consideration is 0,
then shift the window by one bit to the right performing one doubling. Otherwise search for
the longest substring of length ≤ t in the whole number k with the property that the least
significant bit of the substring is 1 and the found substring contains the most significant bit
of the current window.
Now one could compute kNAF from k and proceed with the sliding window method,

applying it to the signed binary representations by making alterations in Algorithm 2.17
similar to those in case of the binary method. But here another way is taken by computing a
generalization of NAF (which would be suitable for sliding window techniques) directly from
k [69].

38



Table 2.16: NAF representation

Input: k = (klkl−1 . . . k0)2, kl = kl−1 = 0

1. c0 ← 0

2. for i from 0 to l − 1 do

ki+1 ← b(ci + ki + ki+1)/2c

k′i ← ci + ki − 2ki+1

Output: (k′l−1 . . . k
′
0)NAF

Table 2.17: Sliding window scalar multiplication method

Input: α ∈ G, k = (kl−1 . . . k0)2, parameter t, precomputed table 3α, 5α, . . . , 2t−1α

1. β ← 1, i← l − 1

2. while i ≥ 0 do

if ki = 0 then β ← 2β, i← i− 1

else

s← max(i− k + 1, 0)

while ns = 0 do s← s+ 1

for h = 1 to i− s+ 1 do y ← 2y

u← (ki . . . ks)2
β ← β + (uα)

i← s− 1

Output: β = kα

39



Definition 21 (width-w NAF, NAFw). A signed τ -representation k
′ =

∑l−1
i=0 k

′
i2
i is called

NAFw for some integer w > 1 if the following three properties hold:

• The most significant non-zero bit is positive, i.e. k′l−1 > 0.

• Among any w consecutive digits, at most one is non-zero.

• Each non-zero digit k′i is odd and less than 2
w−1 in absolute value, i.e. |k′i| < 2

w−1.

It is clear that for w = 2 one has the classical NAF. The NAFw k′ of an integer k is
denoted by k′ = kNAFw . There are several known results about NAFw [66]:

• Every integer has at most one NAFw.

• Every integer has a NAFw.

• An integer’s NAFw is at the most one digit longer that its binary expansion represen-
tation, i.e. the length of kNAFw of k is at most equal to dlog ke+ 1.

• If H(k) is the Hamming weight of some integer k, then H(kNAFw)→
l
w+1 , k →∞.

• [6] NAFw has minimal weight among all signed radix 2 τ -representations with ∀a ∈
τ : |a| ≤ 2w−1.

The NAFw of k can be computed using Algorithm 2.18. Here mods denotes the smallest
residue in absolute value, i.e. n mods 2w ∈ {−2w−1 + 1,−2w−1, . . . , 2w−1}. Now instead
of applying Algorithm 2.17 to kNAF one can use Algorithm 2.15 with kNAFw replacing the
string:

if ki = 1 then β ← αβ (2.67)

with
if ki 6= 0 then β ← (kiα)β, (2.68)

where the values of kiα have been precomputed for all possible ki. This provides the com-
plexity of l additions and asymptotically l

w+1 doublings. In fact some tricks [21] lead to such
a variant of this algorithm that there exists a real number ρ > 1 that this method leads to
the following average complexity:

Dl,w = l −
w(w−1)
2(w+1) +O(ρ

−l) doublings and

Al,w =
l
w+1 −

(w−1)(w+2)
2(w+1)2

+O(ρ−l) additions
(2.69)

for l-bit numbers. Note that one has to precompute the table consisting of:

±3α,±5α, . . . ,±(2w−1 − 1)α, (2.70)

which is not taken into account in the complexity estimates given above. NAFw is optimal in
the sense of the trade-off between speed and memory for w > 3 [13] and can be the method
of choice in the majority of applications in which some precomputations are allowed.
Note that there are some cryptographic protocols that require the computation of the

sum of scalar products of several group elements. For instance, the signature verification
procedure of the generalized DSA implies the computation of γ = u1α + u2β, α, β, γ ∈ G.
The generalized version of the ElGamal algorithm [25] requires the computation of the sum
of scalar products of three group elements. There exist some methods for the computation of
scalar multi-multiplications. The first of them makes use of parallel sliding windows with a set
of precomputed group elements in the form

∑d
i=1 uiαi: αi ∈ G, ui ∈ {1, . . . , n}, i = 1, . . . , d.

40



Here d denotes the number of group elements of which scalar products are computed at the
same time. This method gives advantage [4] over the straightforward computations of the
concerned values. Here two basic effective representations are considered: NAF and JSF
(Joint Sparse Form) allowing comparable efficiency (the exact relationships being dependent
on the bit sizes of ui and the value of d). Another method to take priority of parallelism is
the interleaved multi-multiplication for NAFw. For d = 3 this algorithm proves to be the
best one. For d = 2 the parallel sliding window method with NAF is optimal from the point
of view of speed-memory trade-off possibilities [4].

2.4.2 Fast scalar multiplication over JC(Fq) in different coordinates and
implementation properties of genus 2 hyperelliptic curves

In JC(Fq) the group inversion is almost for free, since −D = −[u, v] = [u,−h − vmodu].
If d is odd, then one can always assume −h − vmodu = x + v = (v1 + 1)x + v0. If d is
even, then −h − vmodu = h + vmodu for degh = 2 and −h − vmodu = h + v for the
most interesting case of degh = 1). For all the further considerations it is assumed that
precomputations are allowed and that the modified binary algorithm is applied to the NAFw
representation of k. All precomputation costs are left out. If no precomputations are allowed,
then it is straightforward to derive the operation count from the information provided in this
subsection and information about NAF in Subsection 2.4.1. See also [8].
The operation counts (addition and doubling) for different combinations of coordinates in

odd characteristic are given in Tables 2.19 and 2.20. From the tables it follows that the fastest
scalar multiplication without inversions can be done combining affine and new coordinates
for addition and new coordinates for doubling. If inversions are relatively cheap, then it is
recommended to use affine coordinates only. The both cases are treated in Table 2.21. The
concrete running times taken from [5] on a standard AMD Athlon at 1GHz under SuSe Linux
9.0 for different coordinate systems together with those for elliptic curves which provide the
same group size are given in Table 2.22. The NAFw representation and the corresponding
algorithm seem to be the most effective combination in case of both elliptic and hyperelliptic
curves. The results are provided for NAFw only together with the optimal value of w which
has been chosen experimentally. Table 2.23 provides the ratio of the running times which arise
in Table 2.22 in the corresponding coordinates for the same group size. One sees immediately
that elliptic curves are faster in odd characteristic in inversion-free coordinate systems with
the formulae we have for the time being. In affine coordinates the arithmetic over hyperelliptic
curves is faster.
The operations of addition and doubling with different combinations of coordinate systems

in even characteristic have complexity values shown in Tables 2.24 and 2.25 respectively.
Here the most interesting case of degh = 1 is considered only and it is assumed that the
extension degree of Fq over GF(2) is odd to get h monic. The operation counts for the scalar
multiplication are given in Table 2.26. Everywhere the scalar multiplication is assumed to be
performed in accordance with NAFw. As for the case of odd characteristic we give the running
times [19] of the scalar multiplication using NAFw for elliptic and hyperelliptic curves in Table
2.27. The measurements were performed on the same hardware and software platform. The
implementation results by Cesena are not complete and involve affine coordinates and 2 group
sizes only. Since Cesena does not implement any inversion-free arithmetic and, hence, the
results are not so representative as those for large prime fields given in Table 2.22 from [5],
but provide a notion of the efficiency of the arithmetic over genus 2 hyperelliptic curves in
even characteristic.
Thus, genus 2 hyperelliptic curves can provide a framework for high performance imple-

mentations of security protocols. The speed of such realizations is very close to the perfor-

41



Table 2.18: NAFw representation

Input: integer k, parameter w > 1

1. i← 0

2. while k > 0 do

if k is odd then

ki ← k mods 2w

k ← k − ki

else ki ← 0

k ← k/2, i = i+ 1

Output: (kl−1 . . . k0)NAFw

Table 2.19: Addition in JC(Fq), g = 2, q odd [8]

Operation Costs

N +N = P 51M+7S
N + P = P 51M+4S
N +N = N 47M+7S
N + P = N 48M+4S
P + P = P 47M+4S
P + P = N 44M+4S
A+N = P 40M+5S
A+ P = P 40M+3S
A+N = N 36M+5S
A+ P = N 37M+3S
A+A = A I+22M+3S

Table 2.20: Doubling in JC(Fq), g = 2, q odd [8]

Operation Costs

2N = P 38M+7S
2P = P 38M+6S
2P = N 35M+6S
2N = N 34M+7S
2A = A I+22M+5S

Table 2.21: Costs of the NAFw scalar multiplication method in JC(Fq), g = 2, q odd (made up by the
author partially following [47])

Case Costs

2A = A,A+A = A (Dl,w +Al,w)I + 22(Dl,w +Al,w)M + (5Dl,w + 3Al,w)S
2N = N ,A+N = N (34Dl,w + 36Al,w)M + (7Dl,w + 5Al,w)S

42



Table 2.22: Running times (in msec) of scalar multiplication in JC(Fq), g = 1 and g = 2, q = p large
prime, NAFw [5]

Coordinates Bitlength of group order

128 144 160 192 224 256

g = 1

A 1.363w=4 2.205w=3 2.489w=4 4.335w=4 6.841w=4 10.099w=4
P 0.551w=3 0.808w=3 0.982w=3 1.591w=3 2.711w=4 3.523w=4
T m 0.474w=3 0.684w=3 0.838w=3 1.395w=3 2.296w=3 3.048w=3

g = 2

A 0.730w=4 1.421w=4 1.558w=4 2.053w=4 3.730w=4 4.464w=4
P 0.703w=4 1.211w=4 1.352w=4 1.742w=4 3.357w=4 4.002w=4
N 0.675w=4 1.14w=4 1.262w=4 1.623w=3 3.020w=4 3.575w=4

Table 2.23: Ratios of the running times of scalar multiplication in JC(Fq), g = 1 and g = 2, q odd,
NAFw, different group sizes (made up by the author on the basis of Table 2.22 )

Coordinates Bitlength of group order

128 144 160 192 224 256

Ag=2/Ag=1 0.53 0.64 0.63 0.47 0.55 0.44
Pg=2/Pg=1 1.28 0.50 1.38 1.09 1.24 1.14
Ng=2/T mg=1 1.42 1.67 1.51 1.16 1.31 1.17

Table 2.24: Addition in JC(Fq), g = 2, q even, d odd, deg(h) = 1 [8]

Operation Costs

R+R = R 49M+8S
A+R = R 42M+7S
A+A = A I+21M+3S

Table 2.25: Doubling in JC(Fq), g = 2, q even, d odd, deg(h) = 1 [8]

Operation Costs

2P = P 22M+6S
2R = R 20M+8S
2A = A I+5M+6S

Table 2.26: Costs of the NAFw method in JC(Fq), g = 2, q even, d odd, deg(h) = 1
(made up by the author partially following [47])

Case Costs

2A = A,A+A = A (Dl,w +Al,w)I + (5Dl,w + 21Al,w)M + (6Dl,w + 3Al,w)S
2R = R,A+R = R (20Dl,w + 42Al,w)M + (8Dl,w + 7Al,w)S

43



Table 2.27: Running times (in μsec) of scalar multiplication in JC(Fq), g = 1 and g = 2, q even, d
odd, deg(h) = 1, NAFw [19]

Coordinates Bitlength of group order

163 191

g = 1

A 4647.129w=3 6064.593w=4
g = 2

A 2207.223w=4 4581.345w=4

mance characteristics of cryptographical system built on elliptic curves. In odd characteristic
hyperelliptic curves cannot provide the same performance level as elliptic curves and are about
30% slower for cryptographically relevant group sizes (with the most efficient formulae we
know). This can be due to the fact that not enough research has been invested in the special-
ization of the general case. It seems to be promising to search for the possibilities to perform
the addition/doubling faster in some special cases which are not without fail dependent on
a special curve equation. Over binary fields of odd extension degrees genus 2 hyperelliptic
curves with deg(h) = 1 overtake elliptic curves due to very efficient doubling in recent co-
ordinates. In this case the arithmetic in JC(Fq) is faster over genus 2 hyperelliptic curves
than over the corresponding elliptic curves and our (de)compression technique (see Subsec-
tion 2.3.4) offers high performance. All these facts make this type of hyperelliptic curves very
attractive for cryptography. This demonstrates that hyperelliptic curves of genus 2 can actu-
ally provide a more efficient framework for implementing cryptographic systems than genus 1
curves. Another advantage of genus 2 curves over genus 1 ones is the smaller base field at the
same security level. This is of importance in dedicated hardware (for instance, cryptographic
accelerators for high-end smart cards). From the hardware point of view every reduction of
the digit capacity of operand results in lower propagation properties and brings down the
gate count which leads to both better performance and lower costs of the resulting hardware
(see for instance [10] for a hardware architecture for genus 2 hyperelliptic curves). Since
these solutions are of great importance in restricted environments which are often mobile,
they are subject to non-mathematical attacks such as side-channel attacks (SCAs). This kind
of attacks can be very dangerous. That is, additional countermeasures should be taken to
protect an implementation from SCAs. This has been done for elliptic curves in a number of
ways (see for example [53], [15], [63]). For hyperelliptic curves there exists some lack of ideas
and concrete effective protected solutions. Some approaches to this problem are discussed in
the next chapter after a survey of side-channel attacks and countermeasures.

44



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

Chapter 3

Side Channel Attacks on Curve
Based Crypto Systems and
Countermeasures

3.1 Threats and vulnerability

In this section the side-channel attacks (SCA) are considered which were introduced in Sub-
section 1.1.1 of Chapter 1. A number of side-channel attacks are described. They are based on
different computational and physical phenomena such as execution time, power consumption,
electromagnetic emanation, sound, failure behaviour of an implementation or any combina-
tion of them (which has not, however, been carefully studied for the time present). Often
SCAs require only restricted time and computational resources to restore sensitive informa-
tion. The SCAs are partially possible without exact knowledge of implementation. As a rule
the SCAs are more efficient than the corresponding mathematical attacks.

3.1.1 Timing attack (TA)

TA seems to have been the first side-channel attack in the literature [40]. In TA the execution
time till a certain place in the algorithm has been reached serves as a stochastic variable in
statistical sense. This aleatory variable is dependent on some secret bits of the key and can
be used to successively obtain them. For the determination of unknown bits one observes
the mean value or the variance. As a rule this attack is more difficult to perform than power
attacks.

3.1.2 Simple and differential power analysis (SPA and DPA)

SPA is based on the direct interpretation of the power profile of a device performing an
operation of which the concrete run depends on some key bits. That is, the measurement of
the power profile is performed once. The aim is to ascertain from this power profile what
instruction and is being executed at the moment and what operands this operation is using.
For this method the adversary needs the precise knowledge of the implementation and the
platform. SPA uses no statistical methods. In Fig. 3.1 SPA is illustrated1 in case the run
of the algorithm is dependent on key bits directly (e.g., conditional branch with consequent
key bits as condition) and there is a possibility to distinguish the two operations (A and B
in Fig. 3.1) which are performed depending on the current key bit. A is executed if the

1The figure is due to Camille Vuillaume [83].



bit is 0, B otherwise. Note that such attacks can be very efficient, if a scalar multiplication
method without any countermeasures is employed, e.g. using Algorithm 2.15 (double and
add method).

Figure 3.1: Schematic diagram of the simple power analysis method.

If the signal-noise-ratio is very small (that is, the dependence on the secret key induces
tiny differences in the power trace, and these are embedded into the noise), then one can
use statistical methods (averaging techniques) in order to amplify the signal [41]. DPA is
based upon a large number of measurements during which the noise is considerably reduced
by applying statistical methods. Note that the exact knowledge of the implementation is not
necessary to be able to successfully perform the attack. The basic principle of the attack
is to make a hypothesis about the values of so-called target bits at a certain appropriate
step of the attacked algorithm. This place is usually at the begin or at the end of the
algorithm. The target bits may depend on a few of the key bits only. Then the cryptographic
algorithm is repeated with random inputs and the same secret key. During the measurements
the corresponding discrete time-dependent curves are drawn and stored. The adversary can
divide the power profiles into two subsets on the basis of the hypothesis. In each of these
classes a specific attribute (e.g., a spike in the power profile at some place) remains the same.
But this attribute is different in the two classes. For classifying a deterministic function of the
form F : (input, target bits) → {class 1, class 2} is used. As the statistic has been gathered,
the mean power profile is computed in each class. Random components tend to vanish. The
constant attribute remains in the form of spikes. At the end the difference of the mean power
profiles is computed (for a simplified illustration see2 Fig. 3.2). If the assumption about
the value of the target bits was incorrect, then the average power traces are the same in the
two cases and the computed difference is a relatively straight line. But if the hypothesis was
correct, then the average power traces possess a spike at the same place. The orientations of
the spikes in the both classes are opposite to each other (downwards and upwards). Hence,
the difference is a much more higher (deeper) spike. By successively applying this method it
can be very easy to determine the whole secret key.
In a higher order DPA [41], [59] the adversary calculates joint statistical properties of

power consumption at multiple sample times within power profiles as opposed to the simple
DPA, where the correlation of power consumption at one place of the algorithm is considered
only. In other words, a kth-order DPA is defined as a DPA that makes use of k different
samples in the power consumption signal that correspond to k different intermediate values
measured during the execution of the algorithm. The analysis can be especially powerful if
the attacked algorithm reuses some variables and their usage is dependent on the secret key.
Address-bit DPA [60], [61] exploits the fact that within an implementation that uses

memory operands in a key-dependent manner there is another representation of the data –

2The figure is due to Camille Vuillaume [83].

46



Figure 3.2: Schematic diagram of the differential power analysis method.

memory addresses. If the measurement of the address related values can be performed exactly
and the details of the implementation are known to the adversary, one deals with a simple
address bit power attack. Otherwise the adversary can try to detect operand reuse using
statistical methods. This works obviously better if there are only a few memory locations.
The analogous attack using differential electromagnetic emission analysis can be considered
too. Against higher order bit-address differential SCAs operand relocation [7] for every run
seems the only choice.

3.1.3 Differential fault analysis (DFA)

DFA was introduced in [12]. The basic idea of DFA is to cause errors in the course of a cryp-
tographic operation from the outside and herewith to increase the amount of the information
about the secret key in the output. The errors can be introduced by glitches (introduction of
voltage transients into the power or clock line), x-rays, exposure to electromagnetic radiation
in the visible or ultra-violet range and so on. If a device is not protected by any shielding
or if the security model allows invasions, the DFA can be very powerful. The application of
DFA to RSA can be found in [3]. The attack can be also powerful in case of elliptic and
hyperelliptic curves [11].

3.1.4 Goubin-type analysis

To withstand differential attacks it is proposed to use different randomization techniques [7].
The Goubin-type analysis [31] is a refinement of the power analysis and allows the adversary
to outflank some types of randomization. At first applied to elliptic curves, the attack proved
to be a more serious threat for hyperelliptic ones. The Goubin-type analysis is based on
the observation that some elements of the group over which a cryptographic system is built
are randomized worse (or not randomized at all) by certain randomization techniques. The
examples of such elements are reduced divisors from Pic0K(C) with a zero element in their
representation over K. For genus 2 curves these are divisors of degree 0 and 1 which are
given by respectively [0 ∙x2+0 ∙x+u0, 0 ∙x+0] and [0 ∙x2+x+u0, 0 ∙x+ v0] in the Mumford

47



representation. For elliptic curves such elements are rational points with a zero coordinate. If
the protocol permits the adversary to input the base elements for scalar multiplication using
the secret key, this attack can be very efficient. In case one can detect these special elements
from the distinct run times of the algorithm, this can be called a Goubin-type timing attack.

3.2 Technical and mathematical countermeasures

In this section some countermeasures to resist SCA on public key systems are discussed. The
consideration is focused on the curve based asymmetric cryptographic systems. In principle
there are two main ways to protect an implementation from SCAs. These are:

• The homogenization of the parameters subject to measurement by the adversary ac-
cording to the security model and

• The randomization of these parameters.

All the methods outlined below realize one of these principles in a certain form.
Although differential attacks can be very efficient for the majority of symmetric key

ciphers (which are not considered here), this is not the case for public key cryptosystems.
In most cases (see generalized DSA and generalized Diffie-Hellman protocol in Subsection
1.1.2 of Chapter 1) the base group element is fixed by the system and the scalar multiplier
is ephemeral, varying at each execution. But there are (a minor number of) protocols and
cryptosystems where the scalar multiplier is the secret key and is fixed. In such a case one has
to face the possibility of an effective differential analysis. For this reason we limit ourselves to
the countermeasures against simple SCAs while considering mathematical measures. Among
technical methods, however, randomization techniques are also considered.

3.2.1 A survey of technical countermeasures against SCA

Although technical countermeasures can be very efficient, there is little information on this
topic in the literature. An attractive approach is the design of a hardware device with constant
power consumption. This is discussed in [81]. This countermeasure is very expensive to
implement, but it protects also against attacks with possible tampering and modification of
the device before performing measurements. In [73] it is proposed to detach the internal power
supply of a device from the external power consumption by putting additional capacitors or
batteries on the power supply path. In practice this approach increases the number of traces
required for a successful DPA. The method is easy to implement, but the additional elements
can be easily removed by the attacker if the security model allows a direct access to the
device. The easiest way to resist EMA is to shield the device. This method is very cheap, but
it is useless against an active adversary. Random process interrupts (RPIs) are realized as
interleaving the execution of the main computational process and some dummy computations
at random. If the processor is capable of multithreading, then one can combine dummy and
useful threads at random. On a clocking device it is possible to randomize the clock signal
[42]. A processor implementing RPIs on parallel pipelines and random time shifts is described
in [57]. The approach combining power-management techniques and randomized clock gating
is called randomized power masking and was proposed in [9]. Another idea which the author
has not found in the literature is to carry out the power supply of a device directly with
noise and so preventing the adversary from measuring the exact power values. The method
is very expensive to implement, but it can offer good security even with an active adversary
by involving some specific security protocols. One more way to complicate DPA is to limit
the number of possible operations with the same secret key. This leads to the restriction of

48



the available statistical material. This countermeasure is easy and cheap to implement, but
is not appropriate at all if the cryptographical operation should be performed very often or
the change of the key is connected with baffling organizational complexity. However, all these
randomization techniques cannot guarantee the unconditional resistance of an implementation
(device) to all SCAs in all security models (passive, active or restrictedly active adversary).
Moreover, some of these methods and their combinations are expensive in terms of higher
power consumption, increased gate area and additional execution time. For the time being
the author sees the best (in terms of the trade-off between the resulting implementation costs
and security properties) way of hedging the implementation against SCAs in a reasonable
combination of technical and mathematical countermeasures.

3.2.2 Mathematical countermeasures against simple SCAs on curve based
public key cryptosystems

Now countermeasures against simple SCAs such as SPA are considered. All these methods
exploit the idea of the homogenization of the algorithm by some means. Moreover, we confine
ourselves to elliptic curves and genus 2 hyperelliptic curves. Within the framework of this
target setting we concentrate on dummy arithmetic instructions, indistinguishable or unified
addition and doubling formulae and scalar multiplication with fixed sequence of operations.

Dummy operations and unified formulae for addition and doubling

Dummy operations can be incorporated into the code to make the run of the scalar multipli-
cation algorithm homogenous. According to [22] the scalar multiplication ’add-and-double’
method is modified to the one represented in Table 3.1 (’always-add-and-double’ method).
It requires l(D+A) operations, but protects against simple SCAs. A more sophisticated way
to add dummy group operations was proposed in [34] and consists in transforming a NAF
into a sequence of the fixed blocks ’double-double-add’ by inserting dummy additions and
doublings. This saves on average 44% additions and requires 11% extra doublings compared
to the ’always-add-and-double’ method. No additional storage is needed. However, it may
be possible to filter out the dummy operations using DFA.
While the previously mentioned methods homogenize the sequence of group operations,

the following methods try to make the flow of underlying field operations homogenous. Thus,
another way of using dummy operations is to split addition and doubling in more elementary
blocks and then make those look identical in terms of base field operations. If the difference
of addition and doubling is not significant (they are almost homogenous), this can be easily
achieved by adding several dummy operations and reordering the run of the algorithms.
This approach was pursued in [20] for elliptic curves. This method is relatively cheap to
implement (the performance penalty can be small). It is of great importance if addition and
doubling differ drastically as for genus 2 curves over binary fields of odd extension degree
with degh = 1. The drawback of this approach is that it allows the adversary to obtain
the Hamming weight of the scalar multiplier k by merely observing the execution time, that
it must be very carefully implemented to really avoid intervals between blocks sequences of
different lengths, and that fault attacks may still be used to reveal the dummy operations
and thus distinguish the operations.
In [63] the notion of pipelining is introduced and in [64] atomic blocks for addition and

doubling over elliptic curves are combined with precomputations according to the comb scalar
multiplication method [32] which reduces and makes constant the number of needed doublings
as well. This additional countermeasure does not allow the adversary to read the Hamming
weight of the scalar multiplier. But the latter approach suffers from the lack of flexibility

49



being aimed at the single scalar multiplication method, and, hence, applies to the fixed base
point scenario only.

Unified addition and doubling over genus 2 hyperelliptic curves

For higher genus hyperelliptic curves the problem of finding an effective and generic counter-
measure against simple SCAs is still an open question. Recently a method to unify addition
and doubling was proposed in [50] for genus 2 hyperelliptic curves over fields of both odd
and even characteristics. The unification requires some dummy operations in both doubling
and addition formulae. The computations can be parallelized. As a basis for the unification
affine coordinates and new coordinates (see Section 2.3) were chosen for curves binary and
large prime fields respectively. In Table 3.2 we give the operation count for the prototype
(unshielded) addition and doubling operations and for the unified ones. It is assumed that
from the point of view of the adversary the operations of multiplication and doubling cannot
be distinguished using information from SCA in case charFq 6= 2. The approach is relatively
straightforward and the corresponding formulae result almost directly from the explicit for-
mulae mentioned in Section 2.3 after properly re-ordering so as to completely unify the runs
of the operations. The formulae require practically no additional field operations and can be
easily combined with every scalar multiplication method we have considered. Moreover, they
can be run in parallel on a limited number of registers (17 registers for charFq = 2, 19 regis-
ters for charFq 6= 2). The only drawback of this approach is the possibility for the adversary
to determine the Hamming weight of the scalar multiplier. We see the further evolution in
this area in getting atomic blocks for some special cases (such as genus 2 hyperelliptic curves
over binary fields with degh = 1), minimizing the number of required registers, getting sim-
ilar unified representations for other coordinate systems including inversion-free coordinates
for hyperelliptic curves over binary fields.

Montgomery ladder

All the above discussed countermeasures against simple SCAs have (at least) one of the
following drawbacks:

• It is possible for the adversary to get the Hamming weight of the secret scalar multiplier;

• One can try to filter out dummy operations by applying DFA;

• Some precomputations are needed (targeted at a fixed base point cryptosystem).

In order to be able to avoid these security and architectural flaws one needs a represen-
tation of scalar multiplication with fixed group operations which would be computationally
more efficient than the always-double-and-add method. It turned out that there is such a
method. It had been initially proposed by Montgomery in [65] for elliptic curves of a special
(Montgomery) form in the context of speeding up the elliptic curve factorization method.
Here a generalization of the Montgomery scalar multiplication method is given par-

tially following [35]. Let G be a commutative group, g ∈ G be one of its elements, k ∈
{1, . . . , ord(g)} be a l-bit positive integer. Let

k =
l−1∑

i=0

ki2
i (3.1)

be the binary expansion of the scalar multiplier k. Now we define:

Lj =
∑l−1
i=j ki2

i−j and

Hj = Lj + 1.
(3.2)

50



Table 3.1: Always double and add method

Input: α ∈ G, k = (kl−1 . . . k0)2 ∈ {1, 2, . . . , n− 1}

1. β0 ← α

2. for i from l − 1 downto 0 do

β0 ← 2β0

β1 ← β0 + α

β0 ← βki

Output: β0

Table 3.2: Efficiency of the unified group operation in Pic0Fq (C), g=2, q odd and q even [50]

charFq Type Operation I M S Dummy

= 2 not unified, ADD 1 22 3 -
affine DBL 1 23 5 -
unified ADD 1 23 5 2M+2S+5A

DBL 1 23 5 4A

6= 2 not unified, ADD - 41 - -
new DBL - 41 - -
unified ADD - 41 - additions and negations

DBL - 41 - additions and negations

51



As a matter of fact Lj is k shifted (with zero fill) towards the least significant bits by j binary
positions. In this notation one can prove the following simple

Lemma 1 (Properties of Lj and Hj).

(1) Lj = 2Lj+1 + kj ,
(2) Lj = Lj+1 +Hj+1 + kj − 1,
(3) Lj = 2Hj+1 + kj − 2.

(3.3)

Proof. These simple properties can be easily proved:

1. 2Lj+1 + kj = 2 ∙
∑t−1
i=j+1 ki2

i−j−1 + kj =
∑t−1
i=j+1 ki2

i−j + kj2
0 =

∑t−1
i=j ki2

i−j = Lj .

2. From Hj = Lj + 1, Lj = Hj − 1, and (1) it follows that Lj = Lj+1 + Lj+1 + kj =
Lj+1 +Hj+1 + kj − 1.

3. Follows directly from (2) by substituting Lj+1 for Hj+1 − 1.

The following constructive statement follows from Lemma 1:

Lemma 2 (Montgomery ladder).

(Lj ,Hj) =

{
(2Lj+1, Lj+1 +Hj+1) if kj = 0,
(Lj+1 +Hj+1, 2Hj+1) if kj = 1,

(3.4)

and, hence:

(Ljg,Hjg) =

{
((2Lj+1)g, (Lj+1 +Hj+1)g) if kj = 0,
((Lj+1 +Hj+1)g, (2Hj+1)g) if kj = 1.

(3.5)

The observation that L0 = k and Lemma 2 give rise to an elegant algorithm for evaluating
k ∙ g which uses only 2 registers β0 and β1 holding group elements, runs homogenously with
respect to different values of k of the same length, requires no precomputations and often
offers significant performance speedup as compared to the ’always-add-and-double’ Algorithm
3.1. Here two representations of the Montgomery ladder are given: The graphic (Fig. 3.3)
and algorithmic (Algorithm 3.3) ones.
This representation of scalar multiplication requires in general t group additions and t

group doublings. But in some cases the Montgomery ladder can reveal itself more efficient
by observing that:

• β1 − β0 = α = const throughout the algorithm;

• At each iteration the operations (D and A) are independent and can be performed in
parallel;

• At each iteration, the operations (D and A) share a common operand which can be of
advantage too.

For the realization some of these techniques over elliptic curves see [53], [15] and [27]. The
Montgomery ladder method is free from the usual flaws mentioned at the beginning of this
subsection while protecting against simple SCAs. If the applied group allows efficient Mont-
gomery arithmetic, then the Montgomery ladder seems to be the scalar multiplication method
of choice in general. But for some cryptographically interesting groups such as Pic0Fq(C) of
a genus 2 hyperelliptic curve this representation in an efficient form is relatively difficult to
get. In the next section we define the properties of an efficient Montgomery representation
more formally and try to take some approaches to get it for the group mentioned.

52



Table 3.3: Montgomery ladder in arbitrary groups

Input: α ∈ G, k = (kl−1 . . . k0)2 ∈ {1, 2, . . . , n− 1}

1. β0 ← 1, β1 ← α

2. for j from l − 1 downto 0 do

if kj = 0 then β1 ← β1 + β0, β0 ← 2β0

else [if kj = 1] β0 ← β1 + β0, β1 ← 2β1

Output: β0 = kα

(1, α)
kl−1

((kl−1)2α, [(kl−1)2 + 1]α)
kl−2

([(kl−1kl−2)2]α, [(kl−1kl−2)2 + 1]α)
kl−3

. . .

k0

([(kl−1 . . . k0)2]α, [(kl−1 . . . k0)2 + 1]α)

=

([k]α, [k + 1]α)

Figure 3.3: Montgomery ladder in arbitrary additive groups. Graphic representation.

53



3.3 Approaches to the Montgomery arithmetic over genus 2
hyperelliptic curves

As one can see from Subsection 3.2.2, the main idea behind the Montgomery arithmetic in
any concrete group is to find such a new representation of the elements of the group (we
call this the Montgomery representation) that the additional information contained in the
difference of two elements can speed up the computation of the sum of these two elements in
this representation. The necessary precondition is the possibility to efficiently double a group
element in the new Montgomery representation. Another requirement to the Montgomery
representation is the possibility to efficiently convert between the ordinary representation and
the Montgomery representation using the additional information in the difference of the two
elements 3.
Now these requirements are formulated more formally as applied to the degree 0 part

Pic0Fq(C) of PicFq(C) for a genus 2 hyperelliptic curve. Let D1, D2 ∈ Pic
0
Fq(C) be two reduced

divisors D1 = [u1, v1] ∈ (Fq)4 and D2 = [u2, v2] ∈ (Fq)4 (each of such divisors can be
represented through 4 base field elements, see Subsection 2.1.2). One is looking for:

• A Montgomery representation space M ;

• An invertible mapping ϕ : Pic0C(Fq)→M ;

• A mapping ψA :M ×M →M representing addition;

• A mapping ψD :M →M representing doubling;

with a further property which can be formulated as follows. Let Lk:

Lk :M →M,

Lk : m 7→ k ∙m,
where m ∈M,k ∈ {1, . . . , n},

(3.6)

be a Montgomery ladder representation using ψA and ψD in M . Then it is required that
M ,ϕ, ψA and ψD should be selected with the following property fulfilled:

∀ D ∈ Pic0C(Fq) and ∀ k ∈ {1, . . . , n} :
ϕ−1(Lk(ϕ(D))) = kD.

(3.7)

If this requirement is fulfilled, then one can speak about the well-defined Montgomery repre-
sentation (M,ψA, ψD, ϕ).

3.3.1 Imitation of the Montgomery ladder for elliptic curves

For the elliptic curve arithmetic such a Montgomery representation can be easily obtained
by refusing of the usage of the y-coordinate of a rational point. This can be easily done over
both large prime fields [15] and binary fields of arbitrary extension degree [53]. Some parallel
techniques for the Infineon cryptographical co-processor Crypto 2000 are introduced in [27].
For elliptic curves this technique can be combined with inversion-free coordinates resulting
in an additional randomization of the base point which can hedge an implementation against
differential attacks.
In [48] an approach to the Montgomery arithmetic over genus 2 hyperelliptic curves defined

over finite fields of odd characteristic is given. There the proof is provided that in order to

3One could, however, build a crypto system directly in the Montgomery representation space. In this case
there can be no need to define the map to the Montgomery representation space.

54



compute the u-coordinate of D1+D2 (each of degree 2) one does not need the v-coordinates
of D1 and D2 if the difference D1−D2 is known. The efficiency of the explicit formulae could
not be determined exactly. This approach to addition is generic in the sense that it does
not require any specific curve equation and can be applied to all genus 2 curves over fields
of odd characteristic. But it seems to be impossible to directly apply the approach in [48].
The doubling of an element is not discussed there in detail and the consideration is limited
to the note that the doubling without v-coordinate can be in principle done using Cantor’s
analogue of division polynomials for hyperelliptic curves. Here the author shows that some
information about the v-coordinate should nevertheless be computed at every step in order
for the group doubling to be possible at all.
Let D = [u, v] be a reduced divisor of degree 2 (deg(u) = 2) from Pic0Fq(C). The goal is

to compute u′ uniquely as a function of the coefficients of the u-coordinate u(x) of D and the
curve equation, where 2D = [u′, v′]. The reference to Cantor’s division polynomials delivers
no proof of the existence of such a function φ. In [17] Cantor notes that his work provides the
division polynomials for the case of deg(u) = 1 only. [17], page 93: "We shall limit ourselves
to the case where D = (x, y)−∞, or, equivalently, . . . to computing r ∙ (x, y) . . . However, if
D =

∑
imi(Pi−∞), then we can form, using the formulas of this paper, the reduced element

of J representing rmi(Pi −∞) for each i, and then add these results using the methods in
Cantor [7]."4 Thus, for the application of these polynomials to a degree 2 reduced divisor
one is referred to the Cantor algorithm to perform the group law in Pic0Fq(C) (see Subsection
2.1.2). But in the algorithm the u-coordinate of the output is made dependent on the v-
coordinate of the input because of the reduction step (step 1 of Algorithm 2). Moreover, the
author is not aware of any concrete applications of Cantor’s division polynomials of genus
g curves to the even characteristic of the base field. Hence, one cannot refer to Cantor’s
division polynomials to show that doubling in Pic0Fq(C) requires no v-coordinate.

To illustrate the dependence of u′ on v it suffices to find such a pair of divisorsD1 = [u1, v1]
and D2 = [u2, v2] with u1 = u2 = u and v1 6= v2 for a hyperelliptic curve C over Fq that
u′1 6= u′2, where D

′
1 = 2D1 = [u

′
1, v
′
1] and D

′
2 = 2D2 = [u

′
2, v
′
2]. Using the computer algebra

system MAGMA the author found a number of curves over which this inequality holds for
some degree 2 reduced divisors in Pic0Fq(C). Several negative examples of this kind are given
in Table 3.4.
Thus, if one wants to pursue this approach, it is necessary to compute some additional

values in order to be able to double a group element.

3.3.2 Special choice degree 2 divisors in Pic0Fq(C)

By testing different curves over different fields of odd and even characteristics is was found
out that there do exist genus 2 hyperelliptic curves of which Pic0Fq(C) contains no other degree
2 reduced divisors except for those that pass the test described in Subsection 3.3.1. In Table
3.5 one can find some examples of such curves defined over small finite fields. As a matter
of fact it turned out that this phenomenon is of purely combinatorial nature. The following
consideration is limited to the case of genus 2 hyperelliptic curves over binary fields of odd
expansion degree with deg(h) = 1 and a method to choose such a group Pic0F

2d
(C) that one

does not have to know v(D) to be able to compute u(2D) in it. The positive examples found
are all of this type.
Consider a genus 2 hyperelliptic curve of the following form:

y2 + h1xy = x
5 + f3x

3 + f2x
2 + f1x over GF(2

n). (3.8)

4The reference ’[7]’ in paper [17] cited here is paper [16] in our notation.

55



In accordance with the explicit formulae for this case the only dependence on the v-coordinate
is the computation of

w1 =
u0

f0 + v20
=
u20
v20
. (3.9)

To pass the test all the degree 2 elements of Pic0F2n (C) must be divided into classes as
shown in Table 3.6.
The degree 2 reduced divisors are divided into t classes according to the u-part. For each

u-coordinate there are ki, i = 1, . . . , t corresponding degree 1 v-polynomials. We have the
following property of this division:

∀D, deg(D) = 2 : D ∈M1 ∪ ∙ ∙ ∙ ∪Mt,
Mi ∩Mj = ∅, i 6= j.

(3.10)

For the test to be passed one needs:

∀D ∈Mi : u
(i)
0 = c

(i)v(i,j), i = 1, . . . , t, j = 1, . . . , ki. (3.11)

That is, the the value of w1 in the explicit formula for addition is constant in each class of
reduced divisors. For the doubling operation to be completely independent of the value of
the v-coordinate (at least from the computational point of view for a particular hyperelliptic
curve of form 3.8) we should demand that:

∀D ∈Mi : u
(i)
0 = cv

(i,j), i = 1, . . . , t, j = 1, . . . , ki, c = const, (3.12)

thus, making the value of w1 constant on the set of degree 2 reduced divisors. In fact such
requirements (of purely combinatorial art) can be imposed for every genus 2 hyperelliptic
curve. Such curves are relatively easy to find over small finite fields (and there are such curves
over small fields which has been proved through numerous experiment using the computer
algebra system MAGMA). However, the author conjectures that such curves over large fields
of cryptographical interest are extremely difficult to find (due to the uselessness of the total
test method in this case) if there are any. Note that it seems to be possible to add two
divisors of degree 2 on a generic genus 2 hyperelliptic curve following the strategy outlined
in [48] without exact knowledge of the v-coordinate (this gives rise to the function ψA).
Performing doubling with the method outlined here it is theoretically possible to get rid of
the v-coordinate while computing in the Montgomery representation space M (this defines
the function ψD). The function ϕ mapping from Pic

0
Fq(C) to the Montgomery representation

spaceM can be easily defined by discarding the v-coordinate, however, it is not clear whether
ϕ is invertible in all cases. Thus, in the case of a special form of a genus 2 hyperelliptic curve
one could find a full Montgomery representation (M,ψA, ψD, ϕ), but this approach which
uses a special choice of Pic0Fq(C) seems to be quite unpractical.

3.3.3 Map to the Kummer surface

In [24] the Montgomery method for scalar multiplication is generalized to the Jacobian of
genus 2 hyperelliptic curves using a constructive approach to building the Kummer surface
given in [18]. It is proposed to identify a point on the Jacobian and its opposite. This possi-
bility is provided by the corresponding map to the Kummer surface where such identification
is natural. The map to the Kummer surface has been constructively considered for genus 2
hyperelliptic curves over Fq with char(Fq) > 5 only. Because of this the consideration in [24]
is limited to prime fields Fp with p ≥ 7.

56



Table 3.4: Doubling in Pic0Fq (C) with v-coordinate only, negative examples

Curve equation Ground fields

y2 + xy = x5 + x3 + x2 + x GF(2m), m = 1, 2, . . .
y2 + (x2 + x)y = x5 + x3 + x2 + x GF(2m), m = 1, 2, . . .
y2 = x5 + x2 + x GF(13), GF(17)

Table 3.5: Doubling in Pic0Fq (C) with v-coordinate only, positive examples

Curve equation Ground fields

y2 + xy = x5 + x2 + x GF(23)
y2 = x5 + x2 + x GF(3), GF(5), GF(7)
y2 = x5 + x2 + 2x GF(5)
y2 = x5 + 5x4 + x2 + x GF(5), GF(3)
y2 = x5 + 5x4 + 6x3 + x2 + x GF(3), GF(7)

Table 3.6: Classes of reduced degree 2 divisors in Pic0Fq
of a genus 2 hyperelliptic curve

M1 M2 . . . Mt

x2 + u
(1)
1 x+ u

(1)
0 : x2 + u

(2)
1 x+ u

(2)
0 : . . . x2 + u

(t)
1 x+ u

(t)
0 :

v
(1,1)
1 x+ v

(1,1)
0 , v

(2,1)
1 x+ v

(2,1)
0 , . . . v

(t,1)
1 x+ v

(t,1)
0 ,

v
(1,2)
1 x+ v

(1,2)
0 , v

(2,2)
1 x+ v

(2,2)
0 , . . . v

(t,2)
1 x+ v

(t,2)
0 ,

. . . . . . . . . . . .

v
(1,k1)
1 x+ v

(1,k1)
0 . v

(2,k2)
1 x+ v

(2,k2)
0 . . . . v

(t,kt)
1 x+ v

(t,kt)
0 .

57



In [24] the curves of so-called Montgomery form are considered only. A curve over Fp is
transformable into Montgomery-like form if it is isomorphic to a curve given by an equation
of the type:

By2 = x5 + f4x
4 + f3x

3 + f2x
2 + x. (3.13)

A curve is transformable into the Montgomery-like form iff:

• f(x) has at least one root α in the base field Fp;

• the number f ′(α) is a 4th power in the field Fp.

The Kummer surface is a quartic surface in P3. Let S be the subset of JC(Fp) ∼= Pic0Fp(C)
consisting of reduced divisors with exactly 2 different points in its support. For a Montgomery-
like hyperelliptic curve the Kummer surface is the image of the map

ϕ : S→ P3(Fp),

ϕ : D = P1 + P2 − 2P∞ 7→ (1, x1 + x2, x1x2,
F0(x1,x2)−2By1y2

(x1−x2)2
),

where

P1 = (x1, y1), P2 = (x2, y2) ∈ Fp,
F0(x1, x2) = (x1 + x2) + 2f2x1x2 + f3(x1 + x2)x1x2 + 2f4x

2
1x
2
2 + (x1 + x2)x

2
1x
2
2.

(3.14)

Thus, one could refer to the image of a reduced divisor D ∈ JC(Fp) on the Kummer surface
as:

ϕ(D) = (k1(D), k2(D), k3(D), k4(D)). (3.15)

For the exact definition of the Kummer surface for the Jacobian of a genus 2 hyperelliptic
curve see [18], where the defining homogenous quartic polynomial φ of degree four in the first
three variables and of degree two in the last one is given. That is, the Kummer surface is the
projective locus given by the equation φ = 0.
Although the Kummer surface loses the group structure, it turned out to be possible to

double there directly and to compute ϕ(D1+D2) on the basis of ϕ(D1), ϕ(D2) and ϕ(D1−D2),
D1, D2 ∈ JC(Fp). S. Duquesne [24] provides a precise breakdown to the explicit formulae to
perform the group law in this Montgomery representation using the Kummer surface for the
Jacobian of a Montgomery-like genus 2 hyperelliptic curve over Fp. The operation count
taken from [24] is provided in Table 3.7. Note that the arithmetic is naturally inversion-free.
The complexity of the corresponding Montgomery ladder scalar multiplication is considerably
faster than the ’always-add-and-double’ method. Moreover, some the diversity-speed trade-off
can drastically increase the performance of the Montgomery ladder in this case.
The only drawback of this method is that it is limited to Fp and a special form of curve due

to efficiency considerations. Theoretically, however, there is no restrictions and the method
can be applied to all genus 2 hyperelliptic curves, but the constructive basis for characteristic 2
fields has not been elaborated precisely yet. This is a very promising research area, since genus
2 hyperelliptic curves over finite fields of even characteristic offer performance sometimes
exceeding that for elliptic curves, and it would be interesting to see whether it could be also
the case for the Montgomery arithmetic through the map to the Kummer surface.

58



Table 3.7: Efficiency of the arithmetic in the Kummer surface, D1, D2 ∈ JC(Fp), D1 − D2 known,
Montgomery-like genus 2 hyperelliptic curve over Fp, field multiplications (M) and squarings (S), [24]

Operation Precomputations Complexity

ϕ(D1 +D2) 16M 31M + 2S
ϕ(2D1) 6M+4S 31M + 5S

59



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

Conclusion

Having been proposed almost simultaneously with elliptic curves [62], [37], the divisor class
groups Pic0Fq(C) of hyperelliptic curves [38] have not been widely applied in the real-world
security solutions yet, although offering the best possible (for groups) exponential security
level and providing approximately the same or sometimes even higher performance on con-
temporary computer platforms than elliptic curves.
In this thesis an introduction to the arithmetic over hyperelliptic curves was given and

the ideal class group (isomorphic to Pic0Fq(C)) of a hyperelliptic curve was defined. Then a

number of currently known ways to efficiently perform the group law in Pic0Fq(C) for genus
2 hyperelliptic curves were considered and some minor inexactness in the explicit formulae
for addition and doubling was removed by the author. Moreover, the author improved the
complexity of a point (de)compression method for a special subclass of genus 2 hyperelliptic
curves over GF(2n).
Although the task of finding efficient ways to implement arithmetic in Pic0Fq(C) of a genus

2 curve seems to be solved (some improvements for special forms of curves being expected),
the problem of efficiently securing the arithmetic against side-channel attacks is still open.
Some ways of doing it were proposed in the literature. The main drawback of the existing
techniques in this area is the possibility to get the Hamming weight of the scalar multiplier
through simple SCAs or to filter out dummy operations through the application of fault-type
attacks. A way which is free from these flaws is the usage of the Montgomery ladder. But
here one has to search for some computational speed-up compared to the ’always-add-and-
double’ method. Few publications on this topic are known only. The approaches proposed
are either incomplete [24] (although delivering good diversity and performance properties)
or cannot be directly applied in their original form [48] (however, giving rise to the generic
Montgomery arithmetic). This was shown in the last chapter of the thesis. One of the most
efficient approaches to the Montgomery ladder for genus 2 hyperelliptic curves the author is
currently aware of is that using the map from Pic0Fq(C) to the Kummer surface [18], [24] or,
alternatively, to perform the arithmetic directly on the Kummer surface. But it is connected
with some computational difficulties which the author hopes to be able to overcome in his
future work.



Efficient and cryptographically secure addition in the ideal class groups of hyperelliptic curves

Bibliography

[1] L. Adleman, J. DeMarrais, and M. Huang. A subexponential algorithm for discrete logarithms
over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields.
In Algorithmic Number Theory, volume 877 of LNCS, pages 28–40. Springer-Verlag, 1994.

[2] M. Atiyah and I. Macdonald. Introduction to Commutative Algebra. Addison-Wesley, 1969.

[3] C. Aumueller, P. Brier, W. Fischer, P. Hofreiter, and J.-P-Seifert. Fault attacks on RSA with
CRT: Concrete results and practical countermeasures. In CHES 2002, LNCS, pages 261–276.
Springer-Verlag, 2002.

[4] R. Avanzi. On multi-exponentiation in cryptography. Cryptology ePrint Archive, Report
2002/154, 2002.

[5] R. Avanzi. Aspects of hyperelliptic curves over large prime fields in software implementations.
Cryptology ePrint Archive, Report 2003/253, December 2003.

[6] R. Avanzi. A note on the signed sliding window integer recording and a left-to-right analogue.
In H. Handschuh and M.A. Hasan, editors, Selected Areas in Cryptography: 11th International
Workshop, SAC 2004, Waterloo, Canada, LNCS. Springer-Verlag, 2004.

[7] R. Avanzi. Side channel attacks on implementations of curve-based cryptographic primitives.
Cryptology ePrint Archive, Report 2005/017, January 2005.

[8] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren. The Handbook
of Elliptic and Hyperelliptic Curve Cryptography. CRC, 2005. to appear.

[9] L. Benini, A. Macii, E. Macii, E. Omerbergovic, M. Poncino, and F. Pro. Energy-aware design
techniques for differential power analysis protection. In DAC-40 - ACM/IEEE Design Automation
Conference, pages 36–41. ACM, 2003.

[10] G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar. Finding optimum parallel coprocessor de-
sign for genus 2 hyperelliptic curve cryptosystems. Cryptology ePrint Archive, Report 2004/029,
2004.

[11] I. Biehl, B. Meyer, and V. Mueller. Differential fault attacks on elliptic curve cryptosystems. In
CRYPTO 2000, volume 1880 of LNCS, pages 131–146. Springer-Verlag, 2000.

[12] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In Crypto’97,
volume 1294 of LNCS, pages 513–525. Springer-Verlag, 1998.

[13] I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1999.

[14] A. Bogdanov and I. Kizhvatov. Quantum algorithms and their impact on the security of classical
cryptographical systems. In Russian. Available from www.cryptography.ru:8200/pubd/2005/

05/12/0001169858/bogdanov_kizhvatov.pdf, February 2005.

[15] E. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In D. Naccache and
P. Paillier, editors, PKC 2002, volume 2274 of LNCS, pages 335–345. Springer-Verlag, 2002.

[16] D. Cantor. Computing in the Jacobian of a hyperelliptic curve. Mathematics of Computation,
48:95–101, 1987.



[17] D. Cantor. On the analogue of the division polynomials for hyperelliptic curves. Journal fuer
reine und angewandte Mathematik, 447:91–145, 1994.

[18] J. W. S. Cassels and E. V. Flynn. Prolegomena to a middlebrow arithmetic of curves of genus 2.
Number 230 in London Mathematical Society Lecture Notes Series. Cambridge University Press,
1996.

[19] E. Cesena. Varieta a traccia zero su campi binari applicazioni crittografiche. Master’s thesis,
Universita’ Degli Studi di Milano, 2004.

[20] B. Chevallier-Mames, M. Ciet, and M. Joye. Low-cost solutions for preventing simple side-channel
analysis: Side-channel atomicity. Cryptology ePrint Archive, Report 2003/237, 2003.

[21] H. Cohen. Analysis of the flexible window powering algorithm. Available from http://www.

math.u-bordeaux.fr/~cohen/window.dvi.

[22] J.-S. Coron. Resistance against power analysis for elliptic curve cryptosystems. In CHES’99,
volume 1717 of LNCS, pages 292–302. Springer-Verlag, 1999.

[23] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transiations on Information
Theory, 22:644–654, 1976.

[24] S. Duquesne. Montgomery scalar multiplication for genus 2 curves. In D.A. Buell, editor, ANTS
2004, volume 3076 of LNCS, pages 153–168. Springer-Verlag, 2004.

[25] T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, IT-31:469–472, 1985.

[26] A. Enge and P. Gaudry. A general framework for subexponential discrete logarithm algorithms.
Acta Arithmetica, 102:83–103, 2002.

[27] W. Fischer, C. Giraud, E. Knudsen, and J. Seifert. Parallel scalar multiplication on general
ellipitic curves over Fp hedged against non-differential side-channel attacks. Cryptology ePrint
Archive, Report 2002/007, 2002.

[28] G. Frey. Applications of arithmetical geometry to cryptographic constructions. In Finite fields
and applications (Augsburg 1999), pages 128–161. Springer-Verlag, 2001.

[29] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves. In Andvances
in Cryptology - EUROCRYPT 2000, volume 1807 of LNCS, pages 19–37. Springer-Verlag, 2000.

[30] D. Gordon. A survey of fast exponentiation methods. Journal of Algorithms, 27(1):129–146,
1998.

[31] L. Goubin. A refined power analysis attack on elliptic curve cryptosystems. In Public Key
Cryptography - PKC 2003, volume 2567 of LNCS, pages 199–210. Springer-Verlag, 2003.

[32] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer-
Verlag, 2004.

[33] F. Hess, G. Seroussi, and N. Smart. Two topics in hyperelliptic cryptography. In Selected Areas
in Cryptography - SAC 2001, volume 2259 of LNCS, pages 181–189. Springer-Verlag, 2001.

[34] Y. Hitchcock and P. Montague. A new elliptic curve scalar multiplication algorithm to resist
simple power analysis. In Information Security and Privacy, volume 2384 of LNCS, pages 214–
225. Springer-Verlag, 2002.

[35] M. Joye and S.-M. Yen. The Mongomery powering ladder. In B.S. Kaliski Jr. et al. (Eds.), editor,
CHES 2002, LNCS 2523, pages 291–302. Springer-Verlag, 2003.

[36] P. Kaye and C. Zalka. Optimized quantum implementation of elliptic curve arithmetic over binary
fields. Available from arXiv.org/quant-ph/0407095, July 2004.

[37] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209, 1987.

[38] N. Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1:139–150, 1989.

62



[39] N. Koblitz, A. Menezes, Y.-H. Wu, and R. Zuccherato. Algebraic Aspects of Cryptography, chapter
An Elementary Introduction to Hyperelliptic Curves. Springer, 1999.

[40] P. Kocher. Timings attacks on implementations of Diffie-Hellman, RSA, DSS and other systems.
In Advances in Cryptology - Crypto 1996, volume 1109 of LNCS, pages 104–113. Springer-Verlag,
1996.

[41] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in Cryptology - Crypto
1999, volume 1666 of LNCS, pages 388–397. Springer-Verlag, 1999.

[42] O. Koemmerling and M. G. Kuhn. Design principles for tamper-resistant smartcard processors.
In Proceedings of the Usenix Workshop on Smartcard Technology, Chicago, 10-11 May, pages
9–20, 1999.

[43] E. Kunz. Introduction to Commutative Algebra and Algebraic Geometry. Birkhaeuser, 1985.

[44] T. Lange. Efficient arithmetic on genus 2 hyperelliptic curves over finite fields via explicit formu-
lae. Cryptology ePrint Archive, Report 2002/121, 2002.

[45] T. Lange. Inversion-free coordinates on genus 2 hypereliptic curves. Cryptology ePrint Archive,
Report 2002/223, 2002.

[46] T. Lange. Weighted coordinates on genus 2 hyperelliptic curves. Cryptology ePrint Archive,
Report 2002/153, 2002.

[47] T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Available from www2. mat.

dtu. dk/ people/ T. Lange/ preprints. html , May 2004.

[48] T. Lange. Montgomery addition for genus two curves. In D.A. Buell, editor, ANTS 2004, volume
3076 of LNCS, pages 309–317. Springer-Verlag, 2004.

[49] T. Lange. Private communication. Ruhr University Bochum, April 2005.

[50] T. Lange and P. Mishra. SCA resistant parallel explicit formula for addition and doubling of
divisors in the Jacobian of hyperellipic curves of genus 2. To appear, 2005.

[51] T. Lange and M. Stevens. Efficient doubling for genus two curves over binary fields. In H. Hand-
schuh and M.A. Hasan, editors, Selected Areas in Cryptography: 11th International Workshop,
SAC 2004, Waterloo, Canada, LNCS, pages 189–202. Springer-Verlag, 2004.

[52] A. Lenstra and Jr. (Eds.) H. Lenstra. The developement of the number field sieve. Springer-Verlag,
1993.

[53] J. Lopez and R. Dahab. Fast multiplication on elliptic curves over GF (2n) without precomputa-
tion. In CHES’99, volume 1717 of LNCS, pages 316–327. Springer-Verlag, 1999.

[54] D. Lorenzini. An Invitation to Arithmetic Geometry. American Mathematical Society, 1996.

[55] D. V. Matuhin. About the asymptotical complexity of the discrete logarithm in the field gf(p).
Discrete mathematics, 15(1):28–49, 2002. In Russian.

[56] D. V. Matuhin and N. N. Murashov. A modification of the number field sieve method for the
discrete logarithm in the field gf(p). Survey of applied and industrial mathematics, 7(2):387–389,
2000. In Russian.

[57] D. May, H. Muller, and N. Smart. Non-deterministic processors. In Information Security and
Privacy, 6th Australasian Conference - ACISP 2001, volume 2119 of LNCS, pages 115–129.
Springer-Verlag, 2001.

[58] A. Menezes, P. van Oorshot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1996.

[59] T. Messerges. Using second order power analysis to attak DPA resistant software. In CHES 2000,
volume 1965 of LNCS, pages 238–251. Springer-Verlag, 2000.

[60] T. Messerges, E. Dabbish, and R. Sloan. Inverstigations of power analysis attacks on smart cards.
In CHES’99, volume 1717 of LNCS. Springer-Verlag, 1999.

63



[61] T. Messerges, Dabbish E, and R. Sloan. Power analysis attacks of modular exponentiation in
smart cards. In Usenix, 1999.

[62] V. S. Miller. Use of elliptic curves in cryptography. In Advances in cryptology –Crypto ’85,
volume 218 of LNCS, pages 417–426. Springer-Verlag, 1986.

[63] P. Mishra. Pipelined computation of scalar multiplication in elliptic curve cryptosystems. In
CHES 2004, LNCS. Springer-Verlag, 2004.

[64] P. Mishra. Scalar multiplication in elliptic curve cryptosystems: Pipelining with Pre-
computations. Cryptology ePrint Archive, Report 2004/191, 2004.

[65] P. Montgomery. Speeding up the pollard and elliptic curve methods of factorization. Math.
Comp., 48(177):243–264, 1987.

[66] J. Muir and D. Stinson. Minimality and other properties of the width-w nonadjacent form. Techni-
cal report, Centre for Applied Cryptographic Research (CACR), the University of Waterloo, Au-
gust 2004. Avaliable at www.cacr.math.uwaterloo.ca/techreports/2004/corr2004-08.pdf.

[67] D. Mumford. Tata Lectures on Theta II. Birkhauser, 1984.

[68] V. Nechaev. Complexity of a determinate algorithm for the discrete logarithm problem. Mathe-
matical Notes, 55:165–172, 1994.

[69] K. Okeya, K. Schmidt-Simon, C. Spahn, and T. Takagi. Signed binary representations revised.
Cryptology ePrint Archive, Report 2004/195, 2004.

[70] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves. Available
from arXiv.org/quant-ph/0301141, 2004.

[71] G. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1960.

[72] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and Analysis of Security
Protocols. Addison Wesley Professional, 2001.

[73] A. Shamir. Protecting smart cards from passive power analysis with detached power supplies.
In Workshop on Cryptographic Hardware and Embedded Systems (CHES) 2000, volume 1965 of
LNCS, pages 71–77. Springer-Verlag, 2000.

[74] C. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 28-4:656–
715, 1949.

[75] P. Shor. Algorithms for quantum computer: Discrete logarithms and factoring. In 35th IEEE
Symposium on Foundations of Computer Science, pages 124–134. IEEE, 1994.

[76] V. Shoup. Lower bounds for discrete logarithm and related problems. In Advances in Cryptology
- EUROCRYPT ’97, volume 1233, pages 256–266. Springer-Verlag, 1997.

[77] J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

[78] C. Stahlke. Point compression on Jacobians of hyperelliptic curves over F∗q . Cryptology ePrint
Archive, Report 2004/030, 2004.

[79] E. Teske. Square-root algorithms for the discrete logarithm problem (A Survey). Technical report,
University of Waterloo, 2001.

[80] N. Thériault. Index calculus attack for hyperelliptic curves of small genus. In ASIACRYPT 2003,
2003.

[81] K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differential CMOS logic with signal
independent power consumption to withstand differential power analysis on smart cards. In 28th
European Solid-State Circuits Conference (ESSCIRC 2002), 2002.

[82] TOP500. Supercomputer sites. TOP500 List. Available from http://www.top500.org/lists/

2004/11/, November 2004.

[83] C. Vuillaume. Side channel attacks on elliptic curve cryptosystems. Master’s thesis, Technische
Universitaet Darmstadt, Fachgebiet Informatik, Fachbereich Kryptographische Protokolle, 2004.

64


