Efficient and Cryptographically Secure Addition in the Ideal Class Groups of Hyperelliptic Curves

Diploma thesis

Andrey Bogdanov*

Scientific advisors: Prof. Dr. Dr. h.c. Gerhard Frey

Prof. Dr. Vladimir Anashin

Russian State University for the Humanities

Faculty of Information Security

Motivation

- A careful study of genus 2 hyperelliptic curve based cryptography;
- A proper analyse of its suitability for real-world applications;
- Efficiency estimates known and improvements;
- Vulnerability against simple side-channel attacks (SCA) — no generic algorithmic solution for the time being;
- The SCA question is especially topical for characteristic 2!

Subexponential and exponential DLP

Russian State University for the Humanities

Faculty of Information Security

R1: Correct Addition Pic⁰_{\mathbb{F}_{a}} (C)

- Publicly accepted formulae contained some relatively hidden but important errors;
- The errors have been found and corrected;
- The new formulae have been tested by numerous examples.

R2: Compression in $\operatorname{Pic}^{0}_{\mathbb{F}_{d}}(C)$

For genus 2 hyperelliptic curves over d^{2d} in any finite fields $GF(2^d)$ of odd extension degree d:

- An efficient variant of a point decompression technique has been proposed;
- The complexity of our technique is: I+10M+(d+2)S, where:
 - I = field inversion,
 - M = field multiplication,
 - S = field squaring.

R3: Montgomery representation,1

For genus 2 hyperelliptic curves over arbitrary finite fields:

- Though publicly believed, group doubling in $\operatorname{Pic}_{\mathbb{F}_q}^0(C)$ cannot be solely parameterized by the *u*-coordinate in the Mumford representation;
- Cantor's division polynomials deliver no proof of this for degree 2 divisors;
- Some additional information needed.

R3: Montgomery representation,2

For genus 2 hyperelliptic curves over arbitrary finite fields:

- One should search for an effective invertible map $\varphi : \operatorname{Pic}_{\mathbb{F}_q}^0(C) \to \mathbb{K}$ to the related Kummer surface \mathbb{K} — a quartic surface in \mathbb{P}^3 with $\varphi(D_1) = \varphi(-D_1), D_1 \in \operatorname{Pic}_{\mathbb{F}_q}^0(C)$
- No group structure (but doubling possible);
- On the basis of $\varphi(D_1), \varphi(D_2), \varphi(D_1 D_2)$ it is possible to construct explicit formulae for $\varphi(D_1 + D_2), D_1, D_2 \in \mathsf{Pic}^0_{\mathbb{F}_q}(C)$

Conclusion

For genus 2 hyperelliptic curves over finite fields:

- Addition and doubling formulae corrected for $\operatorname{Pic}^{0}_{\mathbb{F}_{q}}(C)$;
- Complexity of point decompression improved;
- Framework for getting SCA-resistant Montgomery-like arithmetic provided.

Motivation

- Careful study of genus 2 hyperelliptic curve based cryptography;
- Efficiency estimates and improvements;
- Resistance against simple side-channel attacks — no optimal solution for the time being, especially for even characteristic.

Groups Suitable for Cryptography

For *G* one should have simultaneously:

- Exponential complexity of the DLP for prime group order n = |G|;
- Efficient representation: constructive + bit length $O(\log_2 |G|)$;
- Efficiently performable group law in *G*.

Degree 0 Picard groups $\operatorname{Pic}_{\mathbb{F}_q}^0(C)$ of low genus hyperelliptic curves C fulfill the requirements perfectly!

Hyperelliptic curves

We take a middle-brow approach and deal directly with imaginary quadratic hyperelliptic curves curves.

• An imaginary quadratic hyperelliptic curve C of genus $g \ge 1$ over \mathbb{F}_q is defined by:

$$C: y^2 + h(x) = f(x) \in \mathbb{F}_q[x, y]$$
, where

- $h(x) \in \mathbb{F}_q[x]$ with $\deg(h) \leq g$;
- $f(x) \in \mathbb{F}_q[x]$ is monic with $\deg(f) = 2g + 1$.
- By definition there is (at least) one Weierstraß point $P_{\infty} \notin \mathbb{A}^2(\overline{\mathbb{F}}_q)$, but $P_{\infty} \in \mathbb{P}^2(\mathbb{F}_q)$.

Ideal class group

- For a non-singular curve $C \ M \subset K(C)$ is a fractional K[C]-ideal, if $\exists f \in K(C)^* : fM$ is an ideal of K[C]. $M \subset K(C)$ is an invertible ideal, if there exists $N \subset K(C)$: NM = K[C].
- K[C] is a Dedekind domain \Leftrightarrow every fractional K[C]-ideal is invertible.
- The non-zero fractional K[C]-ideals form a group I with respect ideal multiplication.
- *f* ∈ *K*(*C*) defines a fractional *K*[*C*]-ideal (*f*)
 a principle fractional ideal, the set of *f* forms a subgroup *P* ⊲ *I*.
- $H_{K(C)} = I/P$ ideal class group.

Subexponential and exponential DLP

Russian State University for the Humanities

Faculty of Information Security

Mumford representation

For a genus *g* hyperelliptic curve *C* one has the following group isomorphism:

• $\operatorname{Pic}_{\mathbb{F}_q}^0(C) \cong H_{\mathbb{F}_q(C)}$, where $H_{\mathbb{F}_q(C)}$ is the ideal class group of C. \forall non-trivial $I \in H_{\mathbb{F}_q(C)}$ can be represented via a unique ideal $J \subset \mathbb{F}_q[C]$ generated by 2 polynomials:

•
$$J = \langle a(x), y - b(x) \rangle$$
, $a(x), b(x) \in \mathbb{F}_q[x]$;

a monic;

• $\deg b < \deg a \le g;$

• $a|b^2 + bh - f$.

Picard group cardinality

For a genus g hyperelliptic curve C the following bounds on the cardinality of $\text{Pic}^{0}_{\mathbb{F}_{q}}(C)$ exist:

- $\ \, {\bf I}(q^{1/2}-1)^{2g}\leq |\operatorname{Pic}^0_{\mathbb{F}_q}(C)|\leq (q^{1/2}+1)^{2g},$
- or $|\operatorname{Pic}^0_{\mathbb{F}_q}(C)| \approx q^g$.

Cantor's addition algorithm

Example over the reals \mathbb{R} :

Explicit group law complexity, 1 ..

Addition in $\operatorname{Pic}^{0}_{\mathbb{F}_{q}}(C)$, g = 2, q odd

Operation	Costs
$\mathcal{N}+\mathcal{N}=\mathcal{N}$	47M+7S
$\mathcal{P}+\mathcal{P}=\mathcal{P}$	47M+4S
$\mathcal{A}+\mathcal{A}=\mathcal{A}$	I+22M+3S

Doubling in $\operatorname{Pic}^{0}_{\mathbb{F}_{q}}(C)$, g = 2, q odd

Operation	Costs
$2\mathcal{P}=\mathcal{P}$	38M+6S
$2\mathcal{N}=\mathcal{N}$	34M+7S
$2\mathcal{A}=\mathcal{A}$	I+22M+5S

Explicit group law complexity, 2 ..

Addition in $\operatorname{Pic}^{0}_{\mathbb{F}_{2d}}(C)$, g = 2, q even, d odd

Operation	Costs
$\mathcal{R} + \mathcal{R} = \mathcal{R}$	49M+8S
$\mathcal{A}+\mathcal{A}=\mathcal{A}$	I+21M+3S

Doubling in $\operatorname{Pic}^0_{\mathbb{F}_{2^d}}(C)$, g = 2, q even, d odd

Operation	Costs
$2\mathcal{P}=\mathcal{P}$	22M+6S
$2\mathcal{R}=\mathcal{R}$	20M+8S
$2\mathcal{A}=\mathcal{A}$	I+5M+6S

Montgomery Ladder, 1

A simple method to homogenize group scalar multiplication:

INPUT: $\alpha \in G, \, k = (k_{l-1} \dots k_0)_2 \in \{1, 2, \dots, n-1\}$

1. $\beta_0 \leftarrow 1, \beta_1 \leftarrow \alpha$

2. for j from l - 1 downto 0 do

if $k_j = 0$ then $\beta_1 \leftarrow \beta_1 + \beta_0$, $\beta_0 \leftarrow 2\beta_0$ else [if $k_j = 1$] $\beta_0 \leftarrow \beta_1 + \beta_0$, $\beta_1 \leftarrow 2\beta_1$

Output: $\beta_0 = k \alpha$

$$Montgomery Ladder, 2$$
• For the scalar multiplier *k* define:

$$L_{j} = \sum_{i=j}^{l-1} k_{i} 2^{i-j} \text{ and } H_{j} = L_{j} + 1.$$
• Fact 1:
(1) $L_{j} = 2L_{j+1} + k_{j},$
(2) $L_{j} = L_{j+1} + H_{j+1} + k_{j} - 1,$
(3) $L_{j} = 2H_{j+1} + k_{j} - 2.$
• Fact 2:
 $(L_{j}g, H_{j}g) = \begin{cases} ((2L_{j+1})g, (L_{j+1} + H_{j+1})g), k_{j} = 0, \\ ((L_{j+1} + H_{j+1})g, (2H_{j+1})g), k_{j} = 1. \end{cases}$

Russian State University for the Humanities

Montgomery Ladder, 3

Useful observations:

- $\beta_1 \beta_0 = \alpha = const$ throughout the algorithm, this can be used in some groups to speed-up addition;
- At each iteration the operations (D and A) are independent and can be performed in parallel;
- At each iteration, the operations (D and A) share a common operand which can be of advantage too.

The Montgomery arithmetic can really be very efficient. For instance, elliptic curves!

R1: Correct Addition Pic⁰_{\mathbb{F}_{d}} (C)

- Publicly accepted formulae contained some relatively hidden but important errors;
- The errors have been found and corrected;
- The new formulae have been tested by numerous examples.

R2: Compression in $\operatorname{Pic}^{0}_{\mathbb{F}_{d}}(C)$

For genus 2 hyperelliptic curves over d^{2d} in any finite fields $GF(2^d)$ of odd extension degree d:

- An efficient variant of a point decompression technique has been proposed;
- The complexity of our technique is: I+10M+(d+2)S, where:
 - I = field inversion,
 - M = field multiplication,
 - S = field squaring.

R3: Montgomery representation,1

For genus 2 hyperelliptic curves over arbitrary finite fields:

- Though publicly believed, group doubling in $\operatorname{Pic}_{\mathbb{F}_q}^0(C)$ cannot be solely parameterized by the *u*-coordinate in the Mumford representation;
- Cantor's division polynomials deliver no proof of this for degree 2 divisors;
- Some additional information needed.

R3: Montgomery representation,2

For genus 2 hyperelliptic curves over arbitrary finite fields:

- One should search for an effective invertible map $\varphi : \operatorname{Pic}^{0}_{\mathbb{F}_{q}}(C) \to \mathbb{K}$ to the related Kummer surface \mathbb{K} — a quartic surface in \mathbb{P}^{3} with $\varphi(D_{1}) = \varphi(-D_{1}), D_{1} \in \operatorname{Pic}^{0}_{\mathbb{F}_{q}}(C)$
- No group structure (but doubling possible);
- On the basis of $\varphi(D_1), \varphi(D_2), \varphi(D_1 D_2)$ it is possible to construct explicit formulae for $\varphi(D_1 + D_2), D_1, D_2 \in \mathsf{Pic}^0_{\mathbb{F}_q}(C)$

Conclusion

For genus 2 hyperelliptic curves over finite fields:

- Addition and doubling formulae corrected for $\operatorname{Pic}^{0}_{\mathbb{F}_{q}}(C)$;
- Complexity of point decompression improved;
- Framework for getting SCA-resistant Montgomery-like arithmetic provided.