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Motivation

9

A careful study of genus 2 hyperelliptic curve
based cryptography;

A proper analyse of its suitability for
real-world applications;

Efficiency estimates known and
Improvements;

Vulnerabllity against simple side-channel
attacks (SCA) — no generic algorithmic
solution for the time being;

The SCA question Is especially topical for
characteristic 2!




Groups Suitable for Cryptography

For G one should have simultaneously:

o EXxponential complexity of the DLP for prime
group order n = |G

o Efficient representation:
constructive + bit length O(log, |G));

o Efficiently performable group law in G.

Degree 0 Picard groups Pic p (C) of low genus

nyperelliptic curves  C fulfill the requirements
perfectly!
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Simple Side-Channel Attacks

o Simple power attack — a single power profile;

o If key bits and operation flow are tightly
connected,;

0 5 15 20

_ — o — = m— o= —
operations A A B A B
key 0 0 1 0 1

o Standard scalar multiplication vulnerable!




R1: Correct Addition Plc:ij (C)

o Publicly accepted formulae contained some
relatively hidden but important errors;

o The errors have been found and corrected:

» The new formulae have been tested by
numerous examples.




R2: Compression in Pid (C)

For genus 2 hyperelliptic curves ove?l%ihary finite
fields GF(2¢) of odd extension degree d:

o An efficient variant of a point decompression
technique has been proposed,

o The complexity of our technique Is:
|I+10M+(d+2)S,
where:

s | =field inversion,
s M = field multiplication,
s S = fleld squaring.




R3:. Montgomery representation,l

For genus 2 hyperelliptic curves over arbitrary

finite fields:

o Though publicly believed, group doubling In
Pic%q(C) cannot be solely parameterized by
the u-coordinate in the Mumford
representation;

o Cantor’s division polynomials deliver no
proof of this for degree 2 divisors;

o Some additional information needed.




R3:. Montgomery representation,?

For genus 2 hyperelliptic curves over arbitrary
finite fields:

o One should search for an effective invertible
map ¢ : Picy (C) — K to the related Kummer

surface K — a quartic surface in P? with
o(D1) = o(—D1), Dy € Picg (C)
o No group structure (but doubling possible);

» On the basis of p(D1), (D), (D1 — Ds) itis
possible to construct explicit formulae for
gO(Dl S Dg), Dl, Dy € PlC%q(C)




Conclusion

For genus 2 hyperelliptic curves over finite fields:

o Addition and doubling formulae corrected for
Picy (C);

o Complexity of point decompression improved,;

o Framework for getting SCA-resistant
Montgomery-like arithmetic provided.




Motivation

o Careful study of genus 2 hyperelliptic curve
based cryptography;

o Efficiency estimates and improvements;

» Resistance against simple side-channel
attacks — no optimal solution for the time
being, especially for even characteristic.




Groups Suitable for Cryptography

For G one should have simultaneously:

o EXxponential complexity of the DLP for prime
group order n = |G

o Efficient representation:
constructive + bit length O(log, |G|);

o Efficiently performable group law Iin G.

Degree 0 Picard groups Pic %q(C) of low genus

nyperelliptic curves  C' fulfill the requirements
nerfectly!




Hyperelliptic curves

We take a middle-brow approach and deal
directly with imaginary quadratic hyperelliptic
curves curves.

o An imaginary quadratic hyperelliptic curve C
of genus g > 1 over I, is defined by:

C:y*+ h(z) = f(z) € F [z, y], where

s h(z) € F,|z] with deg(h) < g;
s f(x) € F,|x] is monic with deg(f) = 2g + 1.

o By definition there Is (at least) one Welerstral3
point P, ¢ A*(FF,), but P, € P%(F,).




ldeal class group

# For a non-singular curve C M Cc K(C) is a
fractional K|C]-ideal, if 3f € K(C)*: fM is an
ideal of K|C]. M C K(C) is an invertible
ideal, if there exists N C K(C): NM = K|C].

o K|C]is a Dedekind domain < every
fractional K |C]-ideal is invertible.

» The non-zero fractional K|C|-ideals form a
group I with respect ideal multiplication.

s f e K(C) defines a fractional K|C]-ideal (f)
— a principle fractional ideal, the set of f
forms a subgroup P« 1.

® Hpgy=1/P — ideal class group.
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Mumford representation

For a genus g hyperelliptic curve C' one has the
following group iIsomorphism:

£ PiCI%q(C) = HFq(C),
where Hy (¢ Is the ideal class group of C.

vV non-trivial I € Hy, ) can be represented via a

unique ideal J C FF,|C] generated by 2
polynomials:

o J=<a(z),y—bx) >, a(z),b(z) € Fylz];
® a monic;

» degb < dega < g,

® a|lb’® +bh — f.




Picard group cardinality

For a genus ¢ hyperelliptic curve C the following
bounds on the cardinality of Picg (C) exist:

s (¢"2— 1% < [Pic}, (C)] < (g2 + 1)’

s or |Picy (C)| ~ ¢“.




Cantor’s addition algorithm

Example over the reals R:

Q2
(P14 Py —2Py) + (1 + Q2 — 2Px) = R1 + Ra — 2P

7S TR

\ - \ . , o
Ry
| o




Explicit group law complexity, 1 ..

Addition in Picg, (C), g = 2, ¢ odd

Operation Costs
N +N =N | 4TM+7S
P+P=P | 4/M+4S
A+ A=A | |+22M+3S
Doubling in Picg (C), g = 2, ¢ odd
Operation | Costs
2P =P 38M+6S
2N =N | 3AM+7S
2A=A 1+22M+5S




Explicit group law complexity, 2 ..

Addition in Pic;; (C), g = 2, ¢ even, d odd

Operation | Costs
R+ R =R | 49M+8S
A+ A=A | I+21M+3S
Doubling in Picg (C), g = 2, q even, d odd

Operation | Costs

2P =P 22M+6S
2R =R | 20M+8S
2A=A |1+5M+6S




Simple Side-Channel Attacks

o Simple power attack — a single power profile;

o If key bits and operation flow are tightly
connected,;

0 5 15 20

_ — o — = m— o= —
operations A A B A B
key 0 0 1 0 1

o Standard scalar multiplication vulnerable!




Montgomery Ladder, 1
o A simple method to homogenize group scalar
multiplication:

INPUT: a € G, k= (kj_1...ko)2 € {1,2,...,n— 1}

1.,80(—1,51(—04

2. for 5 from [ — 1 downto 0 do
if k; = 0then 31 < B1 + Bo, Bo < 200
else [if k; = 1] Bo + B1 + Bo, B1 < 2061

OUTPUT: B = ko




Montgomery L adder, 2

o Forthe scallalr multiplier £ define:
Li=) k27 and Hj=L;+1.
i=J

o Fact 1:
(1) Lj = 2Lj41 + kj,
(2) Lj=Ljp1 + Hjp1 + k5 — 1,
(3) Lj — 2Hj+1 St kj — 2.

o Fact 2:

((2Lj-|-1)gv (Lg+1 =+ Hg+1)9) ky N

L:g, H;g) = <
(L3855 = (g1 + Hyn), CHy)g), by =

\




Montgomery L adder, 3

Useful observations:

® (31 — By = a = const throughout the algorithm,
this can be used In some groups to speed-up
addition;

» At each iteration the operations (D and A) are
Independent and can be performed in parallel;

» At each iteration, the operations (D and A)
share a common operand which can be of
advantage too.

The Montgomery arithmetic can really be very
efficient. For instance, elliptic curves!




R1: Correct Addition Plc:ij (C)

o Publicly accepted formulae contained some
relatively hidden but important errors;

o The errors have been found and corrected:

» The new formulae have been tested by
numerous examples.




R2: Compression in Pid (C)

For genus 2 hyperelliptic curves ove?l%ihary finite
fields GF(2¢) of odd extension degree d:

o An efficient variant of a point decompression
technique has been proposed,

o The complexity of our technique Is:
|I+10M+(d+2)S,
where:

s | =field inversion,
s M = field multiplication,
s S = fleld squaring.




R3:. Montgomery representation,l

For genus 2 hyperelliptic curves over arbitrary

finite fields:

o Though publicly believed, group doubling In
Pic%q(C) cannot be solely parameterized by
the u-coordinate in the Mumford
representation;

» Cantor’s division polynomials deliver no proof
of this for degree 2 divisors;

o Some additional information needed.




R3:. Montgomery representation,?

For genus 2 hyperelliptic curves over arbitrary
finite fields:

o One should search for an effective invertible
map ¢ : Picy (C) — K to the related Kummer

surface K — a quartic surface in P? with
o(D1) = o(—D1), Dy € Picg (C)
o No group structure (but doubling possible);

» On the basis of p(D1), (D), (D1 — Ds) itis
possible to construct explicit formulae for
gO(Dl S Dg), Dl, Dy € PlC%q(C)




Conclusion

For genus 2 hyperelliptic curves over finite fields:

o Addition and doubling formulae corrected for
Picy (C);

o Complexity of point decompression improved,;

o Framework for getting SCA-resistant
Montgomery-like arithmetic provided.
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