
ABC – a New Fast Flexible Stream Cipher

Specification, Version 3

Vladimir Anashin1, Andrey Bogdanov2, and Ilya Kizhvatov1

1 Russian State University for the Humanities,
Institute for Information Sciences and Security Technologies,

Faculty of Information Security,
Kirovogradskaya Str. 25/2, 117534 Moscow, Russia

{anashin,ilya.kizhvatov}@rsuh.ru
2 escrypt GmbH – Embedded Security

Lise-Meitner-Allee 4, D-44801 Bochum, Germany
abogdanov@escrypt.com

1 Introduction

ABC is a synchronous stream cipher optimized for software applications. Its
key length is 128 bits. It accommodates a 128-bit initial vector. Here a version
of ABC with a 128-bit key and 32-bit internal variables is presented.
A new approach to the design of stream ciphers has been used which results

in a cipher based upon key- and clock-dependent state transition and filter
functions. More precisely, ABC combines two building blocks: a wreath product
of a LFSR and a non-linear single-cycle T-function, as well as a derivation of
the knapsack function. Our techniques guarantee the period of 232 ∙ (2127 − 1)
words, uniform distribution, and high linear complexity of the keystream of
ABC. The allowed length of a single stream (for a given key/IV pair) for ABC
is 264 32-bit words.
During Phase 1 of eSTREAM the previous versions of ABC ([10] and [11])

were cryptanalyzed. [13], [18] and [26] discovered successful attacks. [19] con-
tains erroneous results that are not applicable [9] to ABC. The current version
of ABC includes tweaks against all of the mounted attacks (a longer LFSR,
another T-function, modified key key setup procedure). It offers a security level
of 2128. No hidden weaknesses have been incorporated in the design of ABC.
ABC can be efficiently implemented in software. Our C implementation en-

cryption performance is about 4 clocks per byte on a standard 1.73 GHz Pentium
M processor. The flexibility property results in the possibility of its efficient ap-
plication on a variety of computer platforms by choosing proper implementation
parameters.

2 Notation

In the description of cryptographic primitives and in the specification of ABC
we rest upon some variables that change at each step of computations:

x is a 32-bit integer value and can be represented in different ways:

x = (x31, . . . , x0) =
∑31
i=0 xi2

i ∈ Z/232Z, xi ∈ {0, 1}, i = 0, . . . , 31;



x = (x̂t−1, . . . , x̂0), x̂i ∈ Z/2wZ, i = 0, . . . , t − 1, w ∈ Z, w | 32,
t = 32/w ∈ Z;

x ∈ V32 = GF(2)32;

y is a 32-bit integer value, one way of representing it being used only:

y = (y31, . . . , y0) =
∑31
i=0 yi2

i ∈ Z/232Z, yi ∈ {0, 1}, i = 0, . . . , 31;

z is a 128-bit integer value and allows several equivalent representations too:

z = (z127, . . . , z0) =
∑127
i=0 zi2

i ∈ Z/2128Z, zi ∈ {0, 1}, i = 0, . . . , 127;

z ∈ V128 = GF(2)128;

z = (z̄3, z̄2, z̄1, z̄0) ∈ (Z/232Z)4, z̄3, z̄2, z̄1, z̄0 ∈ Z/232Z.

x and z represent the current internal state of the cipher. The initial values of
x and z are defined in the course of the initialization stage. y denotes the 32-bit
output of the keystream generator.
Moreover, ABC uses some further variables that are calculated from the key

and initial value at the initialization stage by applying a special key expansion
routine:

e, e0, . . . , e31 ∈ Z/232Z are 32-bit integer values;

d0 = (d0,31, . . . , d0,0), d1 = (d1,31, . . . , d1,0) d2 = (d2,31, . . . , d2,0) ∈ Z/232Z are
32-bit integer values.

Having been defined once at the initialization stage, the variables d0, d1, d2, e
and {ei}31i=0 remain unchanged during the whole subsequent encryption stage as
distinct from x and z.
In the description of cryptographic primitives we will also require a 32-bit

integer ζ ∈ Z/232Z for storing intermediate computation results.
To describe some optimization techniques need an auxiliary w-bit integer

variable j ∈ Z/2wZ will be needed:

j = (jw−1, . . . , j0) =
∑w−1
i=0 ji2

i ∈ Z/2wZ, ji ∈ {0, 1}, i = 0, . . . , w − 1.

Finally, in the description of operations below two 32-bit integer variables
are required:

a = (a31, . . . , a0), b = (b31, . . . , b0) ∈ Z/2
32Z, ai, bi ∈ {0, 1}, i = 0, . . . , 31,

for representing operands of some operators.
The ABC cipher requires the following operations for its specification:

Addition modulo 232, +, represents an ordinary arithmetic addition of 2 operands
in Z/232Z as 32-bit integers;

Bitwise addition modulo 2, XOR, defines a binary addition of 2 operands in V32,
or bitwise exclusive ’OR’ of 2 32-bit integer operands as follows:

a XOR b = (a31 ⊕ b31, . . . , a0 ⊕ b0),

where

ai ⊕ bi =

{
0, if ai = bi,

1, otherwise;

2



Bitwise multiplication modulo 2, AND, defines a bitwise ’AND’ of 2 32-bit integer
operands as follows:

a AND b = (a31 ∧ b31, . . . , a0 ∧ b0),

where

ai ∧ bi =

{
1, if ai = bi = 1,

0, otherwise;

Bitwise disjunction, OR, defines a bitwise inclusive ’OR’ of 2 32-bit integer
operands as follows:

a OR b = (a31 ∨ b31, . . . , a0 ∨ b0),

where

ai ∨ bi =

{
0, if ai = bi = 0,

1, otherwise;

The i-th bit selection, δi(∙), determines the i-th bit of a 32- or 128-bit integer
number and can be described in the following way as applied to respec-
tively x, z, d1 and j:

δi : Z/232Z→ {0, 1}, δi(x) = xi, i = 0, . . . , 31,

δi : Z/2128Z→ {0, 1}, δi(z) = zi, i = 0, . . . , 127,

δi : Z/232Z→ {0, 1}, δi(d1) = d1,i, i = 0, . . . , 31,

δi : Z/2wZ→ {0, 1}, δi(j) = ji, i = 0, . . . , w − 1;

Bit substring selection, [∙]vu, denotes a substring of bits in positions from u to v,
u, v ∈ Z/25Z, in the binary expansion of a 32-bit integer number and is
defined as follows:

[a]
v
u = (δv(a), . . . , δu(a)) = (av, . . . , au), u < v,

for example,

a = 000000000000000100000000001110102,

[a]
16
1 = 10000000000111012;

Right shift, ∙� c, denotes right zero-fill bit shift of binary expansion of a 32-bit
integer number by c bits, c ∈ Z/25Z, and can be described as follows:

a� c = (0, . . . , 0
︸ ︷︷ ︸

c

, a31, . . . , ac);

Left shift, ∙� c, denotes left zero-fill bit shift of binary expansion of a 32-bit
integer number by c bits, c ∈ Z/25Z, and can be described as follows:

a� c = (a31−c, . . . , a0, 0, . . . , 0︸ ︷︷ ︸
c

);

Right rotation, ∙≫ c, denotes right bitwise rotation of binary expansion of a 32-
bit integer number by c bits, c ∈ Z/25Z, and can be described as follows:

a≫ c = (ac−1, . . . , a0, a31, . . . , ac).

3



3 Algorithm Description

This section contains the description of the ABC primitives, keystream generator
and initialization routines. The considerations are given in Section 5.

3.1 Primitives

ABC uses 3 main primitives, A, B and C respectively:

A: Z/2128Z→ Z/2128Z is a linear feedback shift register of length 128 (LFSR),
z representing its state;

B: Z/232Z→ Z/232Z represents a single-cycle mapping based on arithmetical
addition in Z/232Z and bitwise addition modulo 2 (XOR), transforming x;

C: Z/232Z→ Z/232Z specifies a filter function based on lookup tables, arith-
metical addition in Z/232Z and right bitwise rotation (≫), assuming x as
argument.

A: Linear feedback shift register, counter

A is a linear transformation of the vector space V128 = GF(2)128, z = A(z), and
is defined by a LFSR as follows:

ζ ← z̄2 XOR(z̄1� 31) XOR(z̄0� 1)mod 2
32,

z̄0 ← z̄1,
z̄1 ← z̄2,
z̄2 ← z̄3,
z̄3 ← ζ.

(1)

B: Single-cycle function, state transition

The single-cycle function B used in the ABC cipher can be specified through
the following equation:

B(x) = ((x XOR d0) + d1) XOR d2mod 2
32, (2)

where d0, d1, d2 ∈ Z/232Z, d0 ≡ 0 (mod 4), d1 ≡ 1 (mod 4), d2 ≡ 0 (mod 4).
In other words, the following equations should hold simultaneously:






d0,0 = d0,1 = 0,

d1,0 = 1, d1,1 = 0,

d2,0 = d2,1 = 0.

(3)

C: Filter function, output

The filter function C is defined in the following way:

C(x) = S(x)≫ 16, (4)

where S : Z/232Z→ Z/232Z is a mapping defined by

S(x) = e+

31∑

i=0

eiδi(x)mod 2
32. (5)

Here e31 ≡ 216 (mod 217).

4



3.2 Keystream Generator

The keystream generation routine of ABC involves the primitives described in
Subsection 3.1 and consists of 3 steps.

ABC keystream generator

Input: z ∈ Z/2128Z, x ∈ Z/232Z

z ← A(z)

x← z̄3 +B(x)mod 2
32

y ← z̄0 + C(x)mod 2
32

Output: z ∈ Z/2128Z, x ∈ Z/232Z, y ∈ Z/232Z

This routine generates the next 32 keystream bits, y. The newly computed
values x and z form the input of the next iteration of the keystream generation
routine. Here A is a counter which makes the state transition function and the
output function clock-dependent (see Figure 1).
The maximum length of a single stream (stream generated for a single key/IV

pair) is restricted to 264 outputs of the keystream generator.

B

B(x)

B(x) + z̄3

x

x

x

C

C(x)

y = C(x) + z̄0
plain text stream cipher text stream

z̄3

z̄0

z = (z̄3, z̄2, z̄1, z̄0)
z

A(z)
A

Figure 1: ABC keystream generator.
⊕
denotes bitwise addition modulo 2

(XOR). + and � represent arithmetical addition modulo 232.

5



3.3 Key Expansion and Nonce Setup

Here the ABC key expansion and IV setup routines are defined. The ABC
initialization procedure supports 128-bit keys and 128-bit initial vectors.
The main idea behind the initialization routine is to use the ABC keystream

generator (defined in Subsection 3.2 as algorithm "ABC keystream generator")
with feedback. A single call of ABC keystream generator will be denoted here
as the function g:

g(z, x, d0, d1, d2, e, {ei}31i=0),
g : Z/21312Z→ Z/232Z.

(6)

If the optimization tables {Ti}
t−1
i=0 have been precomputed out of coefficients

e, {ei}31i=0 as described in Subsection 6.1, the ABC keystream generator can be
alternatively called as

g(z, x, d0, d1, d2, {Ti}
t−1
i=0).

In both calls variables z and x are changed in a call3 (i.e. within the function
g) as implied by the algorithm "ABC keystream generator" in Subsection 3.2.
The ABC initialization procedure consists of 3 stages:

Key expansion. Let k be the 128-bit primary key:

k ∈ Z/2128Z, k = (k̄3, ..., k̄0) ∈ (Z/2
32Z)4. (7)

During the key expansion the following temporary variables

z′ = (z̄′3, z̄
′
2, z̄

′
1, z̄

′
0) ∈ Z/2

128Z, z̄′i ∈ Z/2
32Z, i = 0, 1, 2, 3;

x′ ∈ Z/232Z, d′0 ∈ Z/2
32Z, d′1Z/2

32Z, d′2Z/2
32Z

are set directly using the primary key k. Then after a number of warmups
with feedback the ABC keystream generator is run to fill the ABC secret
state. At each warmup iteration a 32-bit output of generator is fed back
to some part of the state by means of bitwise addition modulo 2. After the
warmup phase the ABC keystream generator is used to obtain the values
for d0, d1, d2, x, z, {ei}31i=0, e, composing the secret state of ABC.

The values for {ei}31i=0 are obtained in a special way to avoid the com-
binations of values that are weak, see Subsections 5.3 and 5.5 for the
explanation.

In all ABC keystream generator calls during the key expansion stage the
fixed values4 e, {ei}31i=0 of the coefficients of C are used (see Table 1). Since
the values are fixed, it is recommended to precompute the corresponding
optimization tables (once for all possible keys and initial values) following
the idea from Subsection 6.1. The fixed precomputed optimization tables
for the key setup routine are denoted below as {Ti}

t−1
i=0.

3 Strictly speaking one should define g as

g : z × x× d0 × d1 × d2 × e× {ei}31i=0 7→ y × x× z,
g : Z/21312Z → Z/232Z× Z/232Z× Z/2128Z.

In the following the notation g : Z/21312Z → Z/232Z will be used for simplification con-
siderations. One should always keep in mind that the variables x and z are changed in the
corresponding way within each call of g.
4Note that the restrictions imposed by (5) are fulfilled.

6



Table 1: Coefficients for key setup routine, in hexadecimal notation

e = A883B17D e10 = 77F1CE29 e21 = 923DDD55

e0 = 8BBC7B0A e11 = EB94AD46 e22 = A6461E22

e1 = E774A906 e12 = FFD624D0 e23 = CBF825B8

e2 = 13040EC0 e13 = 89581695 e24 = 1139265E

e3 = EA149BD0 e14 = F0BBFBD3 e25 = B9CF4535

e4 = 32E3281D e15 = 83404B20 e26 = E7C87F14

e5 = 38C15589 e16 = 9E66ABEA e27 = F4F855D3

e6 = BDC92EA9 e17 = 798CE417 e28 = 7C77F154

e7 = 6B587BA0 e18 = 8D1ADFB3 e29 = 46C0F13C

e8 = E1009816 e19 = B8C6BF9F e30 = 2D1229E6

e9 = EAA84751 e20 = 3BBAD552 e31 = CF390000

Optimization table precomputation. At this stage the optimization tables
{Ti}

t−1
i=0 are computed out of the coefficients e, {ei}

31
i=0 using formulae (10)

and (11).

IV setup. Let iv be a 128-bit initial value:

iv ∈ Z/2128Z, iv = (īv3, ..., īv0) ∈ (Z/2
32Z)4. (8)

During this stage the idea of self-initialization with feedback is made use
of too. The value iv is added to z, x, d0, d1, d2 bitwise modulo 2 and then
the keystream generator is warmed up with feedback in a way similar to
that at the key expansion stage, but different (key-dependent) coefficients
are used.

Now we are going to define the ABC setup routine formally. In the following
it is assumed that the table optimization is employed and {Ti}

t−1
i=0 or {Ti}

t−1
i=0

are used in calls to the ABC keystream generator g.

ABC setup routine

Key expansion

Input: k = (k̄3, . . . , k̄0), z = (z̄3, z̄2, z̄1, z̄0), x, d0, d1, d2, e, {ei}31i=0, {Ti}
t−1
i=0

Temporary variables: z′ = (z̄′3, z̄
′
2, z̄

′
1, z̄

′
0), x

′, d′0, d
′
1, d

′
2, i, j, ζ

Initialization:

d′0 ← k̄3 AND 1 . . . 1︸ ︷︷ ︸
30

002;

d′1 ← (k̄2 AND 1 . . . 1︸ ︷︷ ︸
30

002) OR 1;

d′2 ← k̄1 AND 1 . . . 1︸ ︷︷ ︸
30

002;

x′ ← k̄0;

z̄′0 ← (k̄0≫ 16) OR 2;
z̄′1 ← k̄1≫ 16;

z̄′2 ← k̄2≫ 16;

7



z̄′3 ← k̄3≫ 16;

Initial state warm-up with feedback:

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

x′ ← x′ XOR ζ;

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

d′0 ← (d
′
0 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸

30

002;

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

d′1 ← ((d
′
1 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸

30

002) OR 1;

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

d′2 ← (d
′
2 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸

30

002;

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

z̄′2 ← z̄′2 XOR ζ;

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

z̄′2 ← z̄′2 XOR ζ;

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

z̄′2 ← z̄′2 XOR ζ;

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

z̄′2 ← z̄′2 XOR ζ;

z̄′0 ← z̄′0 OR 2;

Main state filling:

d0 ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0) AND 1 . . . 1︸ ︷︷ ︸

30

002;

d1 ← (g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0) AND 1 . . . 1︸ ︷︷ ︸

30

002) OR 1;

d2 ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0) AND 1 . . . 1︸ ︷︷ ︸

30

002;

x← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

z̄0 ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0) OR 2;

z̄1 ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

z̄2 ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

z̄3 ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

e← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

for i from 0 to 31 do

ei ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

ei ← ei AND g(z
′, x′, d′0, d

′
1, d

′
2, {Ti}

t−1
i=0);

ei ← ei AND g(z
′, x′, d′0, d

′
1, d

′
2, {Ti}

t−1
i=0);

ei ← ei AND g(z
′, x′, d′0, d

′
1, d

′
2, {Ti}

t−1
i=0);

end for

for i from 0 to 31 do

for j from 0 to 2 do

8



ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

δi(e[ζ]40)← 1;

δi(e[ζ]95)← 1;

δi(e[ζ]1410)← 1;

δi(e[ζ]1915)← 1;

δi(e[ζ]2420)← 1;

δi(e[ζ]2925)← 1;
end for

ζ ← g(z′, x′, d′0, d
′
1, d

′
2, {Ti}

t−1
i=0);

δi(e[ζ]40)← 1;

δi(e[ζ]95)← 1;
end for

e30 ← e30 OR(e31 AND 0 . . . 0︸ ︷︷ ︸
16

1 . . . 1︸ ︷︷ ︸
16

2);

e31 ← (e31 AND 1 . . . 1︸ ︷︷ ︸
16

0 . . . 0︸ ︷︷ ︸
16

2) OR 0 . . . 0︸ ︷︷ ︸
15

1 0 . . . 0︸ ︷︷ ︸
16

2;

Output: z, x, d0, d1, d2, e, {ei}31i=0

Optimization tables precomputation

Input: w, t, e, {ei}31i=0
Temporary variables: i, j, l

for i from 1 to t− 1 do
for j from 0 to 2w − 1 do

Ti[j] = 0

for l from 0 to w − 1 do
Ti[j]← Ti[j] + δl(j) ∙ ew∙i+l;

for j from 0 to 2w − 1 do
T0[j] = e;

for l from 0 to w − 1 do
T0[j]← T0[j] + δl(j) ∙ el;

Output: T0, . . . , Tt−1

IV setup

Input: iv = (īv3, īv2, īv1, īv0),{Ti}
t−1
i=0

Temporary variables: ζ

IV application:

d0 ← (d0 XOR īv3) AND 1 . . . 1︸ ︷︷ ︸
30

002;

d1 ← ((d1 XOR īv2) AND 1 . . . 1︸ ︷︷ ︸
30

002) OR 1;

d2 ← (d2 XOR īv1) AND 1 . . . 1︸ ︷︷ ︸
30

002;

x← x XOR īv0;

9



z̄0 ← (z̄0 XOR(īv0≫ 16)) OR 2;
z̄1 ← z̄1 XOR(īv1≫ 16);

z̄2 ← z̄2 XOR(īv2≫ 16);

z̄3 ← z̄3 XOR(īv3≫ 16);

Warm-up with feedback:

ζ ← g(z, x, d0, d1, d2, {Ti}
t−1
i=0);

x← x XOR ζ;

ζ ← g(z, x, d0, d1, d2, {Ti}
t−1
i=0);

d0 ← (d0 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸
30

002;

ζ ← g(z, x, d0, d1, d2, {Ti}
t−1
i=0);

d1 ← ((d1 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸
30

002) OR 1;

ζ ← g(z, x, d0, d1, d2, {Ti}
t−1
i=0);

d2 ← (d2 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸
30

002;

ζ ← g(z, x, d0, d1, d2, {Ti}
t−1
i=0);

z̄2 ← z̄2 XOR ζ;

ζ ← g(z, x, d0, d1, d2, {Ti}
t−1
i=0);

z̄2 ← z̄2 XOR ζ;

ζ ← g(z, x, d0, d1, d2, {Ti}
t−1
i=0);

z̄2 ← z̄2 XOR ζ;

ζ ← g(z, x, d0, d1, d2, {Ti}
t−1
i=0);

z̄2 ← z̄2 XOR ζ;

z̄0 ← z̄0 OR 2;

Output: z = (z̄3, z̄2, z̄1, z̄0), x, d0, d1, d2

It is important to note that once the key setup routine was run and the tables
were precomputed, there is no need in the table precomputation when the same
key is being set up again. Moreover, the state variables z, x, d0, d1, d2 can be
stored immediately after the completion of the key expansion routine and then
be used to restore the state prior to IV setup, thus shortening the setup routine.

4 Tweaks

This section contains an outline of tweaks that were introduced in the current
version of ABC during Phase 1 of eSTREAM.

4.1 128-bit LFSR A

ABC v.1 [10] was the original submission to eSTREAM. It included a 64-bit
long LFSR. This enabled C. Berbain and H. Gilbert in [13] and independently
S. Khazaei in [18] to mount a divide-and-conquer attack. The attack exploited
the fact that the filter function C is non-balanced and its output is efficiently
distinguishable. Therefore, the state of the LFSR A could be determined by the
full search over the possible LFSR states.

10



This attack becomes impractical when the LFSR A is 128 bits long. The 128-
bit LFSR used in the current version of ABC (see Subsection 3.1) was introduced
in [8].

4.2 Modified Single-Cycle Function B

To compensate for the overhead caused by the 128-bit LFSR A, the single-cycle
transform of B was exchanged with a similar but faster single-cycle transform.
The new transform is used in the current version of ABC (see Subsection 3.1)
and was also introduced in in [8], which lead to ABC v.2 [11].

4.3 Modified Key Setup Procedure

H. Wu and B. Preneel in [26] discovered the weak keys of ABC v.2 for which
an efficient correlation attack can be mounted. The key is weak if it causes the
least significant bit of every coefficient e0, e1, . . . , e31 of the function C to be 0
after the key setup.
This kind of weak keys and also other potential kinds of weak keys can

be eliminated at the key setup procedure. The modified key setup routine is
introduced in the current version of ABC – see Subsections 3.3 and 5.5.

4.4 Restricted Length of a Single Stream

The allowed length of a single stream for the current ABC version is 264 32-bit
words. That is, for a given pair of a key and an initial value the output of ABC
is restricted to 264 32-bit words

5 Design Rationale and Brief Security Analysis

The ABC stream cipher is an example of special design techniques whose math-
ematical background has being developed since early 90-th (see [2]–[7]), and
which exploit some ideas of the p-adic theory of dynamical systems .
The underlying mathematical theory concerns certain mappings that have

been studied in mathematics since early 70-th under different names (triangle
mappings, compatible functions, determined functions); these mappings turned
out to be Lipschitzian p-adic functions, see [5], [2], [3], and [4]. To cryptographic
community special mappings of this kind were introduced only in 2002 under
the name of T -functions (see [20]). The ABC cipher utilizes some single-cycle
T -functions.
The keystream generator of ABC is counter-dependent; that is, both its state

transition and output (filter) functions are being modified dynamically during
the encryption. The notion of a counter-dependent generator was originally
introduced in [23]. We use this notion in a broader sense: In ABC not only
the state transition function, but also the output function is being modified
while encrypting. Moreover, our techniques provide the long period, uniform
distribution, and high linear complexity of output sequences; cf. [23], where the
diversity is guaranteed only.
Mathematical base of our techniques are skew products, also known as skew

shifts (in ergodic theory) , or wreath products (in algebra and automata theory),

11



see [6] and [7]. It is worth noticing here that T -functions are just skew shifts of
a special kind.
On the other hand, the ABC stream cipher can be seen as a generalization

of the hard knapsack stream cipher [22] .

5.1 LFSR A

Linear feedback shift register A is of length 128 and its characteristic polynomial
is φ(θ) = ψ(θ)θ, where ψ(θ) = θ127 + θ63 + 1 is primitive. Since bit operations
are relatively slow on general purpose processors, a word oriented representation
(1) of the LFSR A is used, as in [15]. Two outputs from this LFSR are obtained,
the first one for the state transition procedure and the second one for updating
the output function.
It is important to stress here that (1) is just another (word-oriented) repre-

sentation of the 127-bit LFSR with primitive polynomial ψ(θ). Thus, the cycle
length of this LFSR is 2127 − 1, and not 2128 − 1.
This also leads to the fact that the cycle length becomes 1 in case the initial

state z = (z̄3, z̄2, z̄1, z̄0) of A is either (0, 0, 0, 0) or (0, 0, 0, 1). This danger is
eliminated by forcing δ1(z) to 1 in the ABC key setup and IV setup procedures,
thus reducing the secret state of A primitive to 126 bits.

5.2 Single-Cycle Function B

The restrictions defined in (3) guarantee that B is a single-cycle mapping modulo
232 (that follows from results in [6] and [21]). The form of B(x) is determined
at the initialization stage through setting the 90 bits of d0, d1 and d2 in a key-
and IV-dependent manner.

5.3 Filter Function C

The function C is a non-linear mapping and is the main security block of ABC.
In fact, C is based on the knapsack function proved to be highly non-linear and
to have a high algebraic degree with respect to almost all output bit coordinates.
The imposed restriction on the coefficient e31 together with (4) guarantee the
longest possible period and high linear complexity of the keystream, see Sub-
section 5.4.
The coefficients e, e0, e1, . . . , e31 of C are key-dependent. This makes the cu-

mulative internal state of the cipher sufficiently large. On the other hand, the ar-
bitrary filling of the coefficients of C can lead to the weak cases enabling attacks
like [26]. The filling is weak if one or more bit columns (δk(e0), δk(e1), . . . , δk(e31))

T

possess low Hamming weight (especially, if it is equal to zero). The weak fillings
are avoided by the special steps in the key setup procedure, see Subsections 3.3
and 5.5.
Rotation of the output of the function C moves its least significant bit to the

position where the carries occur in the addition with z̄0. Rotation by 16 bits
was chosen to enable fast implementation by byte swapping on 8-bit and 16-bit
processors.

12



5.4 Keystream Generator

The sequence of states (x; z) of the ABC keystream generator forms a cycle of
length 232 ∙ (2127 − 1). The cycle is totally determined by the LFSR A and
function B: Pairwise distinct functions B (that correspond to distinct triples of
coefficients d0, d1, d2) determine pairwise distinct cycles. A pair of initial states
z (of the LFSR A) and x (of the function B) determine a unique initial position
on the cycle.

Proven Keystream Properties

The following properties of the keystream produced by ABC keystream gener-
ator are proved:

• The length P of the shortest period of the keystream sequence of 32-bit
words is 232 ∙ (2127 − 1)

• The distribution of the keystream sequence of 32-bit words is uniform;
that is, for each 32-bit word a the number μ(a) of occurrences of a at the
period of the keystream satisfies the following inequality:

∣
∣
∣
∣
μ(a)

P
−
1

232

∣
∣
∣
∣ <

1
√
P

• The linear complexity of the keystream bit sequence exceeds 231

Proofs follow from the results presented in [2]–[7].
Note that it could be proved that linear complexity λ of the keystream

satisfies the inequality 231 ∙ (2127 − 1) + 1 ≥ λ ≥ 231 + 1. However, a reduced
model of the cipher (with reduced bit lengths of variables) shows that the lower
bound is too pessimistic: In all cases we obtained values of the linear complexity
close to the upper bound.
Note also that for a truly random sequence of length P of 32-bit words with

probability > 1− 1
232 one has

∣
∣
∣μ(a)P −

1
232

∣
∣
∣ < 1√

P
.

5.5 Key Expansion and Nonce Setup

The design of the key setup routine prevents the weak fillings of C coefficients
described in Subsection 3.3. After the key setup, the number of ones n1 in
every column (δk(e0), δk(e1), . . . , δk(e31)), k = 0, 1, . . . , 31, is distributed in a
non-binomial way with the mean E(n1) close to 16. The probability of n1 = 0
is 0 for k = 0, 1, . . . , 31.
Both key setup and nonce setup use feedback for the proper modification

of the internal state of the cipher. Nonce setup involves 8 iterations of the
keystream generator and is considerably fast.

5.6 Brief Security Analysis

To analyse the security of the ABC stream cipher it is important to stress that
we impose only minor restrictions on coefficients of the functions B and C. We
assume that the rest of the bits of these coefficients are produced in a key-
dependent way out of the key. A key expansion procedure is applied to a key

13



to produce sufficiently many pseudorandom bits to fill the coefficients of the
functions B and C and the registers that store initial values of x and z. This
implies that neither coefficients of the functions B and C nor the initial states
x and z are known to an adversary.
Time-memory-data tradeoffs, either suggested by Biryukov and Shamir in

[14] or the generalized ones suggested by Hong and Sarkar in [17] (see [16] for
discussion), are not posing a threat to the ABC cipher. For the former case
the TMD complexity is greater than the 2128 exhaustive search due to large
state size (above 1300 bits). The latter case also does not lower the exhaustive
search threshold, even if unlimited computational resources at precomputation
stage are considered, as ABC uses a 128-bit initial value and a 128-bit key, the
collective enthropy of key and IV being 256.
Related-key and resynchronization attacks are withstood by the proper key

setup and IV setup algorithms. Both algorithms (see Subsection 3.3) use self-
initialization with feedback, which does not show possibilities for applying these
techniques.
Algebraic attacks are thwarted by the non-linear properties of the output

primitive (see Subsection 5.3).
Correlation attacks. In the current version of ABC, we did not find any

parity checks that are sufficiently biased to mount a correlation attack having
a maximum of 264 ABC outputs available in a single stream.
Empirical statistical testing, performed with NIST suite with respect to

AES candidates evaluation (see [24]), has not indicated any deviation of ABC
keystream from a random sequence. Moreover, our testing has shown that the
keystream statistical properties provided by ABC are at least as good as those
of AES finalists, given in [25]).

6 Implementation

This section contains the description of the efficient computation of the function
C, followed by the outline of processor-specific implementation issues.

6.1 Efficient computation of C

Here we present a way to speed up the computation of the function C through
the introduction of several tables of variable length using a version of the idea
outlined in [12].
To compute S as in (5) it is not necessary to read x bitwise at each iteration.

Instead of this a window technique can be used. To give another representation
of S consider a positive integer value w 6= 1 or 32, w | 32, i.e., w = 2, 4, 8 or 16.
Now divide the bit representation of x into t = 32/w windows, each of length w
bits :

x = (x̂t−1, . . . , x̂0), x̂i ∈ Z/2
wZ, i = 0, . . . , t− 1. (9)

Let T0, . . . , Tt−1 be tables, each holding 2
w 32-bit elements. These tables can

be precomputed in the following way:

Ti[j] =
w−1∑

l=0

δl(j) ∙ ew∙i+lmod 2
32, j = 0, . . . , 2w − 1, (10)

14



for i = 1, . . . , t− 1 and

T0[j] = e+

w−1∑

l=0

δl(j) ∙ elmod 2
32, j = 0, . . . , 2w − 1, (11)

for i = 0. Then S can be rewritten in the corresponding way:

S(x) =

t−1∑

s=0

Ts[x̂s], x̂s ∈ Z/2
wZ, s = 0, . . . , t− 1. (12)

Using this window optimization method it is possible to vary memory con-
sumption. We have computed the respective values and give them in Table
2. Depending on the available hardware or software resources, users can select
the optimal value for their specific purposes. More generally, the bit lengths of
windows do not need to be equal. For example, one can use three windows of
bit lengths 12, 12 and 8 bit respectively. This approach makes memory con-
sumption much more flexible. Additionally it is possible to make no use of this
optimization method in case of strictly limited memory resources. However, this
approach is not recommended in applications subject to side-channel attacks.
It requires 33 32-bit values e, {ei}31i=0 and therefore 132 byte memory, which is
the minimum value for the ABC filter function C.

Table 2: Memory consumption and window bit length

w = window bit length t = number of tables memory, 4 ∙ t ∙ 2w byte
2 16 256
4 8 512
8 4 4096
16 2 524288

6.2 32-bit processors

Although the ABC stream cipher shows very good throughput results on every
software platform, it is optimized to be used on 32-bit processors such as Intel
Pentium 4 or PowerPC G4+.
Our C reference implementation was compiled using icc 9.0. The measure-

ments were carried out within the eSTREAM testing framework [1] under Linux
with a 2.6.11 kernel on a laptop with a 1.73 GHz Intel Pentium M 740 processor
with 64KB L1 cache and 2MB L2 cache, and 512 MB main memory. The best
throughput for this hardware configuration was achieved with the combination
of three windows of bit lengths 12, 12 and 8 bits. The results of the through-
put measurement for C reference implementation including the memory needed
for the ABC internal state can be found in Table 3 for different measurement
conditions. The results for key an IV setup procedures, and also for the table
precomputation, can be found in Table 4.
The measurement results make it clear that precomputation of the optimiza-

tion tables has the major impact on the total cost of the key setup procedure.
Thus, we recommend choosing smaller window sizes when dealing with encryp-
tion of short packets for different keys, which would raise the total performance
of ABC in this case. Exact values depend, however, on a specific platform.

15



Table 3: ABC v.3 throughput for Intel Pentium M

w Cycles per byte Memory, bytes
2 12.13 320
4 7.63 576
8 4.81 4160

12/12/8 4.03 33856

Table 4: Cost of ABC v.3 setup routines in processor cycles for Intel Pentium M

w Key setup IV setup Table Key setup without
precomputation precomputation

2 14188 407 60 14128
4 11581 269 1861 9720
8 52741 214 45891 6850

12/12/8 586220 209 579999 6221

Our implementation can be flexibly tuned for maximum performance on
a specific platform by choosing the appropriate values of two implementation
parameters. The first parameter is the length of optimization window w. The
second parameter, to which we refer as unroll depth, is the number of ABC
core transform iterations explicitly unrolled within cycles producing a number
of keystream bytes. In our C reference implementation we allow users to choose
one of the 10 predefined variants of optimization window length and unroll
depth combinations at compile time. We expect that different variants will
show different performance on specific platforms. The choice of the variant that
shows the best performance depends on various parameters of a platform, such
as processor architecture, relative costs of processor operations, L1 and L2 cache
sizes, relative costs of the access operations to different types of RAM/ROM,
and also type of operation system, version of compiler, compiler options, and
many others.
We also expect a speedup of ABC for the implementation in assembly lan-

guage, which invokes the usage of SIMD extensions available for specific proces-
sors.

7 Conclusion

In this paper we presented ABC – a fast flexible synchronous stream cipher
for software applications. We introduced tweaks increasing the security of the
cipher and eliminating the attacks mounted on the previous versions of ABC.
ABC advantages are high performance, some provable security properties

and high flexibility. ABC meets a number of industrial software implementation
properties such as generic performance property, flexible storage consumption
and flexible cost of IV/key setup procedures. This makes ABC applicable not
only on standard 32-bit platforms, but in some embedded security systems with
high performance requirements as well.

16



References

[1] eSTREAM optimized code HOWTO. http://www.ecrypt.eu.org/

stream/perf. 15

[2] V. S. Anashin. Uniformly distributed sequences over p-adic integers (in
Russian). Mat. Zametki, 55(2):3–46, 1994. English transl. in Mathematical
Notes, 55(2):109–133, 1994. 11, 13

[3] V. S. Anashin. Uniformly distributed sequences in computer algebra, or
how to construct program generators of random numbers. J. Math. Sci.,
89(4):1355–1390, 1998. 11

[4] V. S. Anashin. Uniformly distributed sequences of p-adic integers, II (in
Russian). Diskret. Mat., 14(4):3–64, 2002. English transl. in Discrete Math.
Appl., 12(2):527–590, 2002. A preprint in English available from http:

//arXiv.org/math.NT/0209407. 11

[5] Vladimir Anashin. Uniformly distributed sequences over p-adic integers. In
I. Shparlinsky A. J. van der Poorten and H. G. Zimmer, editors, Number
theoretic and algebraic methods in computer science. Proceedings of the Int’l
Conference (Moscow, June–July, 1993), pages 1–18. World Scientific, 1995.
11

[6] Vladimir Anashin. Pseudorandom number generation by p-adic ergodic
transformations, 2004. Available from http://arXiv.org/abs/cs.CR/

0401030. 12

[7] Vladimir Anashin. Pseudorandom number generation by p-adic ergodic
transformations: An addendum, 2004. Available from http://arXiv.org/

abs/cs.CR/0402060. 11, 12, 13

[8] Vladimir Anashin, Andrey Bogdanov, and Ilya Kizhvatov. Increasing the
ABC stream cipher period. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/050, 2005. http://www.ecrypt.eu.org/stream. 11

[9] Vladimir Anashin, Andrey Bogdanov, and Ilya Kizhvatov. Security and
implementation properties of ABC v.2. SASC 2006, 2006. http://www.

ecrypt.eu.org/stream, Report 2006/026. 1

[10] Vladimir Anashin, Andrey Bogdanov, Ilya Kizhvatov, and Sandeep Ku-
mar. ABC: A new fast flexible stream cipher. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.
org/stream. 1, 10

[11] Vladimir Anashin, Andrey Bogdanov, Ilya Kizhvatov, and Sandeep Kumar.
ABC: A new fast flexible stream cipher. Version 2, 2005. http://crypto.
rsuh.ru/papers/abc-spec-v2.pdf. 1, 11

[12] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On
economic construction of the transitive closure of a directed graph (in Rus-
sian). Dokl. Akad. Nauk SSSR, 194, 1970. English translation in Soviet
Math. Dokl., 11, 1975, pp. 1209-1210. 14

17

http://crypto.rsuh.ru/papers/abc-spec-v2.pdf
http://crypto.rsuh.ru/papers/abc-spec-v2.pdf
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://arXiv.org/abs/cs.CR/0402060
http://arXiv.org/abs/cs.CR/0402060
http://arXiv.org/abs/cs.CR/0401030
http://arXiv.org/abs/cs.CR/0401030
http://arXiv.org/math.NT/0209407
http://arXiv.org/math.NT/0209407
http://www.ecrypt.eu.org/stream/perf
http://www.ecrypt.eu.org/stream/perf


[13] Côme Berbain and Henry Gilbert. Cryptanalysis of ABC. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/048, 2005. http://www.

ecrypt.eu.org/stream. 1, 10

[14] Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs
for stream ciphers. In Advances in Cryptology – ASIACRYPT’00, volume
1976, pages 1–13, 2000. 14

[15] C. Carroll, A. Chan, and M. Zhang. The software-oriented stream cipher
SSC2. In Fast Software Encryption – FSE 2000, volume 1978 of LNCS,
2001. 12

[16] Joseph Lano Christophe De Cannière and Bart Preneel. Comments on
the rediscovery of time memory data tradeoffs. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/040, 2005. http://www.ecrypt.eu.
org/stream. 14

[17] Jin Hong and Palash Sarkar. Rediscovery of time memory tradeoffs. Cryp-
tology ePrint Archive, Report 2005/090, 2005. http://eprint.iacr.org/.
14

[18] Shahram Khazaei. Divide and conquer attack on ABC stream cipher.
eSTREAM, ECRYPT Stream Cipher Project, Report 2005/052, 2005.
http://www.ecrypt.eu.org/stream. 1, 10

[19] Shahram Khazaei and Mohammad Kiaei. Distinguishing attack on the
ABC v.1 and v.2. eSTREAM, ECRYPT Stream Cipher Project, Report
2005/061, 2005. http://www.ecrypt.eu.org/stream. 1

[20] Alexander Klimov and Adi Shamir. A new class of invertible mappings.
In B.S.Kaliski Jr.et al., editor, Cryptographic Hardware and Embedded Sys-
tems 2002, volume 2523 of LNCS, pages 470–483. Springer-Verlag, 2003.
11

[21] L. Kotomina. Fast nonlinear congruential generators (in Russian). Diploma
Thesis. Russian State University for the Humanities, Moscow, 1999. 12

[22] R.A. Rueppel. Analysis and Design of Stream Ciphers. Springer Verlag,
1986. 12

[23] A. Shamir and B. Tsaban. Guaranteeing the diversity of number generators.
Information and Computation, 171:350–363, 2001. Available from http:

//arXiv.org/abs/cs.CR/0112014. 11

[24] J. Soto. Randomness testing of the advanced encryption standard candidate
algorithms. NIST IR 6390. http://csrc.nist.gov/rng/AES-REPORT2.

doc. 14

[25] J. Soto and L. Bassham. Randomness testing of the advanced encryption
standard finalist candidates. NIST IR 6483. http://csrc.nist.gov/rng/
aes-report-final.doc. 14

[26] Hongjun Wu and Bart Preneel. Cryptanalysis of ABC v2. eSTREAM,
ECRYPT Stream Cipher Project, Report 2006/029, 2006. http://www.

ecrypt.eu.org/stream. 1, 11, 12

18

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://csrc.nist.gov/rng/aes-report-final.doc
http://csrc.nist.gov/rng/aes-report-final.doc
http://csrc.nist.gov/rng/AES-REPORT2.doc
http://csrc.nist.gov/rng/AES-REPORT2.doc
http://arXiv.org/abs/cs.CR/0112014
http://arXiv.org/abs/cs.CR/0112014
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

