
ABC Is Safe And Sound

Vladimir Anashin, Andrey Bogdanov, Ilya Kizhvatov

Faculty of Information Security

Institute for Information Sciences and Security Technologies

Russian State University for the Humanities

Kirovogradskaya Str. 25/2, 117534, Moscow, Russia

{anashin,bogdanov,kizhvatov}@rsuh.ru

Abstract

ABC is a synchronous stream cipher submitted to eSTREAM [4].
In the previous paper [3] we suggested minor tweaks that increase the
period and the secret state of ABC. Here we describe how these tweaks
make ABC v.2 [5] resistant to certain attacks, including the ones pre-
sented in [6] and [7]. We also note that the paper [8] contains multiple
errors and the distinguisher for ABC v.2 has complexity greater than
the brute force attack.

1 Introduction

ABC is a synchronous stream cipher optimized for software applications.
Techniques used in the ABC design enable one to build platform-independent
ciphers offering fast and natural implementations in C or most other algo-
rithmic languages. The version of ABC with a 128-bit key and 32-bit internal
variables, offering 128-bit security, was submitted to eSTREAM [4].

Actually ABC is a family of stream ciphers. The flexibility of the ABC
design enabled us in [3] to suggest the tweaks raising its keystream period
from 232 · (263− 1) 32-bit words to 232 · (2127− 1) 32-bit words while keeping
all the other properties of ABC stated in [4], including guaranteed uniform
distribution and high linear complexity of the keystream. For further details
refer to the ABC v.2 specification [5].

This paper outlines how the tweaks make ABC v.2 resistant to certain
distinguishing attacks. Another possible update is also discussed. We show
that ’Theorem 1’ from the paper [7] by S. Khazaei describing an attack on
ABC is wrong.

We also note that the paper [8] by S. Khazaei and M. Kiaei contains
multiple errors and does not present any distinguishing attack both on ABC
v.1 and v.2. Moreover, our experiments indicate that the distinguisher for
ABC v.2 has the complexity greater than that of a brute force attack.

1

mailto:anashin@rsuh.ru,bogdanov@rsuh.ru,kizhvatov@rsuh.ru


2 ABC modifications

Here the tweaks in the ABC keystream generator making ABC v.2 out of
ABC v.1 are briefly outlined. The adjusted setup procedures1 described in
[3, 5] are not discussed here. The notation is the same as in [4, 5, 3].

The keystream generator of ABC v.2 is illustrated in Figure 1.

B

B(x)

B(x) + z̄3

x

x

x

C

C(x)

y = C(x) + z̄0
plain text stream cipher text stream

z̄3

z̄0

z = (z̄3, z̄2, z̄1, z̄0)
z

A(z)
A

Figure 1: ABC v.2 keystream generator

The formal description of the routine is as follows:

ABC v.2 keystream generation routine

Input: z ∈ Z/2128
Z, x ∈ Z/232

Z

z ← A(z)

x← z̄3 + B(x)mod 232

y ← z̄0 + C(x)mod 232

Output: z ∈ Z/2128Z, x ∈ Z/232Z, y ∈ Z/232Z

1Some inaccuracy mentioned in [6] was corrected in [3, 5].

2



In both versions of ABC A is a linear transformation of the vector space
Vn = GF(2)n with a cycle of length 2n−1 − 1 (where n = 128 for ABC v.2,
and n = 64 for ABC v.1), B is a single cycle T-function on 32-bit words,
and C : Z/232

Z → Z/232
Z is a filter function: C takes x as argument and

produces y in the following way:

ζ = S(x),

y = ζ ≫ 16,
(1)

where S : Z/232
Z→ Z/232

Z is a mapping defined by

S(x) = e +

31
∑

i=0

eiδi(x)mod 232, (2)

e31 ≡ 216 (mod 217). Coefficients e, e0, . . . , e31 ∈ Z/232
Z are obtained from

the key during the initialization procedure.
The single cycle function B used in the ABC v.2 cipher can be specified

through the following equation:

B(x) = ((x XOR d0) + d1) XOR d2 mod 232, (3)

where d0, d1, d2 ∈ Z/232
Z, d0 ≡ 0 (mod 4), d1 ≡ 1 (mod 4), d2 ≡ 0

(mod 4). In the non-modified ABC v.1 the function B was of the form

B(x) = d0 + 5(x XOR d1)mod 232, (4)

with d0, d1 ∈ Z/232
Z, d0 ≡ 1 (mod 2), d1 ≡ 0 (mod 4).

Under the restrictions mentioned above the following properties of the
keystream produced by the ABC v.2 keystream generator are proven:

• The length P of the shortest period of the keystream sequence of 32-bit
words is P = 232 · (2127 − 1).

• The distribution of the keystream sequence of 32-bit words is uniform
in the following sense: For each 32-bit word a the number µ(a) of
occurrences of a at the period of the keystream satisfies the following
inequality:

∣

∣

∣

∣

µ(a)

P
− 1

232

∣

∣

∣

∣

<
1√
P

.

• The linear complexity λ of the keystream bit sequence satisfies the
inequality 231 · (2127 − 1) + 1 ≥ λ ≥ 231 + 1.

Proofs are based on the results presented in [2] and can be found in the
updated ABC specification [5].

3



3 Attacks and remedies

In this section we describe some attacks that lead to recovering the internal
state of the (non-modified) ABC v.1, and which are more efficient than a
brute force attack. We describe the corresponding remedies as well.

3.1 Attacks

Suppose that one has a statistical test T (which is further called a distin-
guisher) that could tell the keystream sequence Y = {yj ∈ Z/232

Z}∞j=0 from

the intermediate sequence C(X) = {C(xj) ∈ Z/232
Z}∞j=0, which is the out-

put of the function C. Then trying different initial states ẑ of the LFSR A
and testing the sequences C(X)(z) = {yj − z̄0,j(ẑ) mod 232} with T , where
z̄0,j(ẑ) is the the 32 low order bits of the output of the LFSR A at the
j-th step, one finds z̄. Under the assumption that T makes no errors in
distinguishing, the computational cost of finding the true initial state of the
LFSR is (2n − 1)T computations of AB, where T is the computational cost
of testing one sequence with the test T , and n is the length of the LFSR
registry (i.e., n = 63 in non-modified ABC, and n = 127 in the modified
one). After finding the true initial state ẑ of the LFSR, one tests coefficients
of the function B and then, solving the corresponding congruences modulo
232 with respect to the unknown values of e, e0, . . . , e31, totally recovers the
internal state of the ABC.

This idea was quite clear to the designers from the very beginning of
the development of ABC 2. We did not find such a distinguisher with low
computational cost T before the submission of our specification; we were
not even convinced that such a distinguisher exists. However, later3 we
found some distinguishers with relatively low computational costs, which
thus make ABC vulnerable to the described attack. Immediately after that
we found a remedy and prepared a modified version [3] of ABC (that is,
ABC v.2)4.

We must point out here that attacks of this kind were recently described
by Berbain and Hilbert in [6], and by Shahram Khazaei in [7]. By the
time5 the paper [6] was posted at the ECRYPT site our paper [3] had been
submitted to ECRYPT and the specification [5] of ABC v.2 was already
available at http://crypto.rsuh.ru.6 So attacks of the kind described in

2This was clearly marked in the first draft of the ABC specification, which was submit-
ted to ECRYPT. However, in the final version the corresponding subsection ‘Some Special
Attacks’ containing the description of the idea of the attack was totally omitted in order
to make our quite lengthy submission shorter.

3It was in June 2005.
4This modified version was submitted to ECRYPT in the very beginning of July 2005.
5That was on July 18-th, 2005.
6We are puzzled that the paper [6] was published at the ECRYPT site one day earlier

than our paper [3], which was published at the ECRYPT site a week after it had been

4

http://crypto.rsuh.ru


[6] and [7] had been thwarted before they were published.

3.2 Remedies

We need only those remedies that do not worsen the important properties
of ABC (long period, uniform distribution and high linear complexity of the
keystream) and/or significantly reduce its performance. There are several
such remedies; two of them are described below.

3.2.1 Remedy 1: Special coefficients

Since the coefficients e, e0, . . . , e31 of the function S of (2) are produced in a
pseudorandom way during the initialization stage, the probability the map-
ping C of (1) is bijective is too small; see Corollary 1 below for the exact
value of that probability7. Hence, with high probability the distribution of
the sequence C(X) = {C(xj) ∈ Z/232

Z}∞j=0, is not uniform since the distri-

bution of the sequence X = {xj ∈ Z/232
Z}∞j=0, which is the output if the

function B, is uniform8. At the same time, the distribution of the keystream
sequence Y = {yj ∈ Z/232

Z}∞j=0 is uniform (see Section 2). Hence, the dis-

tribution of the sequence C(X)(ẑ) is not uniform in case of the right guess
of the initial state ẑ of the LFSR A, since the distribution of the output
sequence of the LFSR A is uniform.

Thus, a distinguisher T just tests the uniformity of distribution of the
sequence C(X)(z) for various z; in case the distribution is not uniform, the
corresponding z = ẑ is accepted as a true one. Note that distinguishers of
[6] and of [7] are exactly of this sort.

To make sequences C(X)(ẑ) indistinguishable one from another with
respect to the test T for all the choices of ẑ it suffices to choose coefficients
of S in some special way to ensure that S is bijective.

Thus one needs criteria the coefficients should satisfy to make S bijective.
In [7, Theorem 1] the following ’criterion’ is stated: The function

S(x) = e +
∑k−1

i=0 eiδi(x) (mod 2k),
x, e, ei ∈ Z/2k

Z, i = 0, . . . , k − 1,
(5)

induces a permutation of the reside ring Z/2k
Z iff for each non-empty subset

M ⊂ {0, 1, . . . , k − 1}
∑

i∈M

ei 6≡ 0 (mod 2k).

submitted.
7Note that in both [6] and [7] the authors use in their arguments only very rough

estimates of this probability: The estimate of [6] is just an empirical conjecture, the one
of [7] is based on the erroneous ‘Theorem 1’ of [7].

8The latter statement follows from the results stated [2] and can be found in [5].

5



However, it could be immediately shown that the above ‘criterion’ (as
well as the whole ‘Theorem’ 1 of [7]) are merely wrong: Take k = 3, put e0 =
1, e1 = 2, e2 = 3 and verify that the mapping x 7→ δ0(x)+2 · δ1(x)+3 · δ2(x)
is not a permutation of the residue ring modulo 8.

The right criterion reads the following.

Theorem 1 9 The function (5) induces a permutation on the ring Z/2kZ

if and only if

ej0 ≡ 1 (mod 2), ej1 ≡ 2 (mod 4), . . . , ejk−1
≡ 2k−1 (mod 2k),

for some permutation (j0, j1, . . . , jk−1) of (0, 1, . . . , k − 1).

Corollary 1 There are exactly k! · 2
k(k+1)

2 permutations among all 2k(k+1)

pairwise distinct transformations of form (5) of the residue ring Z/2k
Z.

Hence, the probability that S is a permutation is k! · 2−
k(k+1)

2 .

In other words, S of (2) is a permutation iff e0, . . . , e31 could be reordered
so that ei = 2i ·e′i, where e′i are odd, i = 0, 1, . . . , 31. Note that our condition
e31 ≡ 216 (mod 217) is in a certain sense a ‘remnant’ of our Theorem 1.

Thus, just to avoid the kind of attack described in [6] and [7] it is suf-
ficient only to make minor modifications to the initialization procedure so
that one of e0, . . . , e31 always has 1 in the least significant bit position, an-
other has 01 in its two rightmost bit positions, a further one has 001 in
the three rightmost bit positions, etc. The modification does not change

the ABC keystream generation routine at all, leaving both the performance
and other properties (period length, uniform distribution, linear complexity)
unchanged.

So the assumption of [7] by S. Khazaei that ‘The designers of ABC have
not neither evaluated C function theoretically nor using statistical simula-
tions and just have designed C function to provide a provably minimum
period for its output sequences’ is just not true. We certainly could make
S (whence, C) balanced (that is, bijective) at the very first stage of the
ABC design procedure: We had mathematical tools to construct balanced
mappings. Note that these tools have been developed long before10 (and
are more effective) than the ones of paper [9], which the author of [7] men-
tions. However, the arbitrary choice of coefficients in accordance with our
Theorem 1 could lead to some very effective algebraic attacks unless some
special countermeasures are undertaken. Yet so far the only countermea-
sures that either decrease performance or make the initialisation procedure
too complicated are known to us.

9Theorem 1 follows immediately from a (more than 10 year old) result of one of us, see
[1, Proposition 4.8]. Also, it could be easily deduced from the older result of DeBruijn, see
[10, Section 4.1, Exercise 30]. Of course, it is not difficult to prove this theorem directly.

10See e.g. the bibliography in [4] and [5]

6



Moreover, making S bijective per se does not make ABC resistant to

attacks based on other distinguishers that exploit statistical properties other

than the distribution of 32-tuples. So we consider the following modification
as a much better one.

3.2.2 Remedy 2: Long LFSR

This solution is based on the usage of LFSR with period 2127 − 1 instead of
the LFSR with period 263 − 1 in the keystream generator, see Figure 1. In
spite of the fact that it implies modification of the keystream routine (we
had also to modify the B function to compensate some speed reduction),
the solution makes the ABC resistant to all possible attacks of the described
kind independently of concrete distinguishers T they are based on: The
computational cost is then (2127 − 1) · T ≈ 2127 · T ≥ 2128, since we could
hardly imagine a distinguisher with computational cost T = 1, under every
reasonable definition of what is computational cost. Thus, every attack of
the described type becomes less effective than a brute force attack. As a
bonus we obtain certain increase of security of the function B, since some
extra bits of security are added (cf. (3) and (4)).

4 A note on distinguishers

In their paper [8] Shahram Khazaei and Mohammad Kiaei claimed that there
is a distingusher on both versions of ABC with the complexity of about 232.
The claim was supported by the empirical results of computer experiments
with a set of reduced versions of ABC.

The analysis of the C code11 used for performing the computer experi-
ments showed that the authors of [8] have made multiple conceptual errors
and implementation bugs:

1. Incorrect calculation of the function A

(a) using a linear congruential generator rand() provided by stan-
dard C++ library instead of the LFSR;

(b) using non-primitive polynomials in attempt to emulate LFSR A.

2. Incorrect calculation of the function B

(a) replacing single-cycle function B by a simple counter f(x) = x+1;

(b) lack of counter-dependency, i. e. no addition of part of LFSR
state while calculating the next value of x;

11provided by Shahram Khazaei and available at http://crypto.rsuh.ru

7

http://crypto.rsuh.ru


(c) therefore, the sequence at the input of the function C has a period
of 2m m-bit words for any λ, i. e. the authors use λ consequential
identical subsequences {1, 2, ..., 2m−1} to ”emulate” the behavior
of B while analyzing the keystream of N = 2mλ words.

3. Incorrect calculation of the output of the ABC cipher

(a) 4 consequential outputs of C are identical, as the single input
value of C is consequentially used 4 times to calculate C output;

(b) lack of rotation of C output.

Hence the paper [8] presents a distinguisher for some construction with
catastrophical cryptographic properties which has nothing to do with ABC
v.1 or v.2. Shahram Khazaei and Mohamad Kiaei disproved their claims
against ABC at the eSTREAM forum12.

Our computer experiments with the accurately implemented reduced
versions of ABC v.213 modelled the same distinguishing algorithm and em-
ployed good truly random sequences. The latter were obtained from a phys-
ical source of randomness. The experiments showed that distinguishing is
completely impossible with time and data compexities of about 2m for ABC
with m-bit words.

Moreover, the results of extensive simulations on a high-performance
computing cluster14 indicate that distinguishing of m-bit ABC for m > 12
with a negligible error probability cannot be performed with time and data
complexities less or equal to 24m, which is the size of the key space. That
is, distinguishing of full-scaled ABC v.2 from the random sequence requires
significantly more resources than the 2128 brute force key search, which
makes the distinguishers nonsensical and totally impractical.

5 Conclusion

In this paper we have shown that the simple way to increase the period
of the ABC stream cipher, which was described in [3], has already totally
eliminated the attacks described in [6] and [7] prior to their publication.
Also we have studied another way of thwarting these attacks and explained
why we have preferred the way of [3]. Finally, it was noted that results
stated in [8] are erroneous and distinguishing ABC v.2 from the random
sequence is actually harder than the exhaustive key search.

12see http://www.ecrypt.eu.org/stream/phorum
13also available at http://crypto.rsuh.ru
14the cluster of Research Computing Center of Moscow State University, see

http://srcc.msu.su/nivc/index engl.htm

8

http://www.ecrypt.eu.org/stream/phorum
http://crypto.rsuh.ru
http://srcc.msu.su/nivc/index_engl.htm


References

[1] Vladimir Anashin. Uniformly distributed sequences over p-adic inte-
gers. In I. Shparlinsky A. J. van der Poorten and H. G. Zimmer, editors,
Number theoretic and algebraic methods in computer science. Proceed-
ings of the Int’l Conference (Moscow, June–July, 1993), pages 1–18.
World Scientific, 1995. 6

[2] Vladimir Anashin. Pseudorandom number generation
by p-adic ergodic transformations, 2004. Available from
http://arXiv.org/abs/cs.CR/0401030. 3, 5

[3] Vladimir Anashin, Andrey Bogdanov, and Ilya Kizhvatov. Increasing
the ABC stream cipher period. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/050, 2005. http://www.ecrypt.eu.org/stream.
1, 2, 4, 8

[4] Vladimir Anashin, Andrey Bogdanov, Ilya Kizhvatov, and Sandeep
Kumar. ABC: A new fast flexible stream cipher. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream. 1, 2, 6

[5] Vladimir Anashin, Andrey Bogdanov, Ilya Kizhvatov, and Sandeep
Kumar. ABC: A new fast flexible stream cipher. Version 2, 2005.
http://crypto.rsuh.ru/papers/abc-spec-v2.pdf. 1, 2, 3, 4, 5, 6

[6] Côme Berbain and Henry Gilbert. Cryptanalysis of ABC. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/048, 2005.
http://www.ecrypt.eu.org/stream. 1, 2, 4, 5, 6, 8

[7] Shahram Khazaei. Divide and conquer attack on ABC stream cipher.
eSTREAM, ECRYPT Stream Cipher Project, Report 2005/052, 2005.
http://www.ecrypt.eu.org/stream. 1, 4, 5, 6, 8

[8] Shahram Khazaei and Mohammad Kiaei. Distinguishing attack on the
ABC v.1 and v.2. eSTREAM, ECRYPT Stream Cipher Project, Report
2005/061, 2005. http://www.ecrypt.eu.org/stream. 1, 7, 8

[9] Alexander Klimov and Adi Shamir. A new class of invertible mappings.
In B.S.Kaliski Jr.et al., editor, Cryptographic Hardware and Embedded
Systems 2002, volume 2523 of Lect. Notes in Comp. Sci, pages 470–483.
Springer-Verlag, 2003. 6

[10] Donald Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, third edition, 1998. 6

9

http://arXiv.org/abs/cs.CR/0401030
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://crypto.rsuh.ru/papers/abc-spec-v2.pdf
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

	1 Introduction
	2 ABC modifications
	3 Attacks and remedies
	3.1 Attacks
	3.2 Remedies
	3.2.1 Remedy 1: Special coefficients
	3.2.2 Remedy 2: Long LFSR


	4 A note on distinguishers
	5 Conclusion

