ABC: A New Fast Flexible Stream Cipher

Vladimir Anashin Andrey Bogdanov* Ilya Kizhvatov

Russian State University for the Humanities Faculty of Information Security

*Partially supported by the Institute for Experimental Mathematics, University of Duisburg-Essen, Germany

ABC: A New Fast Flexible Stream Cipher – p. 1/19

Motivation

A highly flexible framework for manufacturing fast and secure stream ciphers.

 Illustration of our efficient techniques resting upon p-adic analysis and automata theory.

Simplicity of design.

Traditional design of PRNG

C non-linear filter function,

В

other crypto properties

ABC: A New Fast Flexible Stream Cipher - p. 3/19

The ABC design pattern

ABC: A New Fast Flexible Stream Cipher - p. 4/19

ABC: Function A

ABC: Function A in Detail

$$\phi(\theta) = (\theta^{63} + \theta^{31} + 1)\theta$$

ABC: Function B

B : Defines a single cycle permutation over $\mathbb{Z}/2^{32}\mathbb{Z}$

ABC: Function B in Detail

ABC: A New Fast Flexible Stream Cipher - p. 8/19

ABC: Function C

ABC: Function C in Detail

•
$$S(x) = e + \sum_{i=0}^{31} e_i \delta_i(x) \pmod{2^{32}}$$
, where
• $\delta_i(x) \in \{0, 1\} =$ the *i*-th bit of *x*,
• $e, e_i \in \mathbb{Z}/2^{32}\mathbb{Z}$,
• $e_{31} \equiv 2^{16} \pmod{2^{17}}$.
• $C(x) = S(x) >>> 16 \pmod{2^{32}}$.
• **NB! Not**

 $C(\mathbf{x}) = S(\mathbf{x}) + (S(\mathbf{x}) >> 16) \pmod{2^{32}}$ as in the contribution submitted to SKEW 2005!

ABC: Function C in Detail

ABC: Function C, SCA

In applications subject to SCA we recommend to use masking:

Modify each table by adding a random r or its additive inverse -r to the table elements depending on the parity of the table number.

ABC: Function C, SCA

Properties of the ABC design pattern

Provable properties of the ABC key stream:

- The period of $(2^{63} 1) \cdot 2^{32}$ words;
- Uniformly distributed key stream: \forall 32-bit word a the number $\mu(a)$ of occurrences of a on the period satisfies:

$$\left|\frac{\mu(a)}{(2^{63}-1)\cdot 2^{32}} - \frac{1}{2^{32}}\right| < \frac{1}{\sqrt{(2^{63}-1)\cdot 2^{32}}};$$

High linear complexity λ of the key stream: $2^{31} \cdot (2^{63} - 1) + 1 \ge \lambda \ge 2^{31} + 1.$

Properties of ABC circuit: Notes

- As a matter of fact we have proved the group of statements for a larger class of A, B, C. Thus, the designer can choose the maps suitable for the specific requirements.
- Note that the fact that these crucial security properties are proven does not exclude the necessity to analyse the concrete representations of A, B and C with respect to the whole set of cryptographical attacks.

ABC: Key dependence, State space

The following values can be (almost) freely defined without worsening the security properties of the resulting ABC mapping:

- A: The initial state $z \in \mathbb{Z}/2^{32}\mathbb{Z}$;
- B: The coefficients $d_0, d_1 \in \mathbb{Z}/2^{32}\mathbb{Z}$ and initial state $x \in \mathbb{Z}/2^{32}\mathbb{Z}$;
- C: The coefficients $e, e_1, \ldots, e_{31} \in \mathbb{Z}/2^{32}\mathbb{Z}$.

NB! All up to restrictions imposed above! Altogether we have **1195 bits** to be freely set. Note that not all the bits have the same impact on the security of the cipher.

ABC: Key dependence, Cycles

The ABC stream cipher defines a family of cycles of length $2^{32}(2^{63} - 1)$ words in the following way:

 $d_0, d_1, e, \{e_i\}_{i=0}^{31}$

■ $d_0, d_1, e, e_1, \dots, e_{31}$ define a concrete cycle of length $P = 2^{32}(2^{63} - 1);$

• x, z select a start point on the cycle defined (exactly $2^{32}(2^{63}-1)$ variants).

ABC: Speed & Memory consumption

- A generic reference C implementation on a standard 3.2 GHz Intel Pentium 4 processor under Linux.
- Minimum 132 byte memory used.

w	Speed,	Cycles	Table memory,
	Gbps	per byte	bytes
2	2.25	11.38	256
4	4.24	6.04	512
8	6.86	3.73	4096

ABC: Conclusion

- Freedom to choose mappings A, B, C;
- Important security properties are *proven*;
- Novel approach to *counter-dependence*;
- High degree of key-dependence;
- Key material usage flexibility;
- High *flexibility* in terms of *memory consumption*;
- Extremely high throughput rate of a *generic* ANSI C implementation 6.9 Gbps, or 3.7 clocks/byte on a Pentium 4 processor.